WeedSmart is the industry voice that delivers science-backed weed control solutions.

Explore Resources

Harvest Weed Seed Control 101 course - updated!

We recently updated our Harvest Weed Seed Control 101 online course!

There have been a few changes in the HWSC world since we first published the course. We created 9 brand-new videos to bring you the latest and most relevant information on harvest weed seed control.

This free online course is taught by WeedSmart western extension agronomist Peter Newman and University of Sydney’s Dr Michael Walsh.



Check out the updated course!

Latest Resources

View all
Audio
Podcast

163: Diverse rotations rock – good for profit, weeds and nitrogen!

CSIRO Chief Research Scientist for Farming Systems, Dr John Kirkegaard, joins us to tell us about current trial work he is leading looking at the impact of rotations on soil water, nitrogen, and profit in the face of variable climatic conditions.
Wimmera Farmer Tim Rethus joins us to update us on how he’s keeping his weed seed banks as low as possible. Tim was one of our farm hosts back in 2019 at Horsham WeedSmart Week. We’re going to find out what’s changed for Tim with his farming system and how he’s going to approach his summer weed control program.
And last, but not least, Tim Frazer, who farms in Chinchilla Queensland, has a chat with us about how he’s managing Group A (Group 1) and Group M (Group 24) resistance.
Webinar recording
 Our last webinar for the year was on Metolachlor usage in the northern region, presented by Rob Battalia from Syngenta, with WeedSmart Northern Extension Agronomist Paul McInstosh hosting. You can now watch it online here.
Case Studies
We have two new case studies for you to check out!
Jamie and Susie Grant, Jimbour Qld, over the years have adopted controlled traffic, minimum tillage, cover cropping and vigilant weed management as key strategies to maximise water infiltration and minimise losses to run-off, evaporation and wasted evapotranspiration throughout the year. Learn all about their farming system in this case study here.
Peter and Kylie Bach from Pittsworth Qld are aiming for 130% utilisation of their cropping land through the year. Peter and Kylie Bach have developed a farming system that extracts full value from barley stubble and minimises weed pressure. Learn all about their farming system here.
 
 

Video
Webinar

S-Metolachlor usage in the northern region

In this WeedSmart webinar, we talk to WeedSmart northern extension agronomist Paul McIntosh and Syngenta’s Field Biology Manager Rob Battaglia about how S-Metolachlor (Dual Gold) works, its efficacy, and what potential resistance problems might be around the corner. They explain what tactics growers should adopt to reduce potential resistance problems on this key grass weed herbicide, referring to the WeedSmart Big 6.
Topics covered include:

Application considerations for maximum efficacy
Incorporation
Effect of stubble
Herbicide solubility
Herbicide binding characteristics
Herbicide safener “EPIVIO-C”

Audio
Podcast

162: Regional Update – Bernie Quade, Agronomist, Wyalkatchem, WA

Bernie talks to us about how frost has affected his region and provides some tips on Summer weed control.
This is our last Western Region Update for the year! Thanks to Bernie for coming on and having a chat with us!  Give Bernie a follow on Twitter here.

Articles

View all
Article
Ask an Expert

What can I do to control large FTR grass in fallow?

Feathertop Rhodes grass (FTR) is a major weed in chemical fallows in Australia, and is notoriously hard to kill with glyphosate.
Bhagirath Chauhan, professor at the University of Queensland’s Centre for Crop Science, says some other herbicide control measures have potential to manage large FTR plants (40 to 50 leaf stage) that have escaped earlier treatment.
Professor Bhagirath Chauhan says there are some tank mixes and herbicide sequences that growers could deploy to help manage FTR and stop seed set.
“Feathertop Rhodes grass is an aggressive weed that can establish in bare fallow situations and produce a large quantitiy of seed if left uncontrolled,” he says. “Several biotypes of this species are resistant to glyphosate and can also survive a double knock of glyphosate followed by paraquat, particularly once the weed is larger than 4 to 5 leaf stage.”
To give growers more options, a study was conducted to assess the potential of other herbicides and use patterns that can control large feathertop Rhodes plants or stop seed set.   
Alternative herbicide options are available to help manage large FTR and reduce seed set in fallow.
“An integrated approach is essential to controlling feathertop Rhodes grass,” says Bhagirath. “In applying the WeedSmart Big 6 to FTR in a bare fallow situation we have identified some tank mix and herbicide sequences that growers could deploy to help manage this difficult weed and stop seed set.”
Can anything be done to improve the efficacy of glyphosate or the double knock against large FTR plants?
In brief: Adjuvants did not improve glyphosate efficacy on mature (40 to 50 leaf) FTR plants. In glyphosate resistant populations, the second knock product is doing the heavy lifting when applied to large (8 to 10 leaf) FTR plants.
The details: None of the commercially available adjuvants improved the efficacy of glyphosate (740 g a.e. per ha) as a single product application on FTR at the 40 to 50 leaf stage. All the plants survived and produced seed after being treated with glyphosate, indicating that the population used in the study was resistant to glyphosate at this rate and weed growth stage.
Glyphosate and the double knock tactic can often provide good control of resistant FTR plants if the herbicide is applied when the plants are small and actively growing.
The traditional double knock of glyphosate (Group 9 [M]) or glyphosate + 2,4-D, followed by paraquat (Group 22 [L]) or glufosinate (Group 10 [N]), applied to older FTR plants (8-10 leaf) achieved increased phytotoxicity through improved mortality, reduced biomass or fewer seed panicles.
However, the double knock was no better than using paraquat or glufosinate alone when applied to 8 to 10 leaf FTR plants. FTR is not listed on glufosinate labels in Australia but is used to control other weeds in fallow situations at the rate (750 g a.i. per ha) tested in this study. For best results, glufosinate needs to be applied in warm, humid conditions, which is not a common scenario for summer fallow situations.
Rate response (0, 187.5, 375 and 750 g a.i. per ha) to glufosinate applied to large FTR plants.
Are clethodim or haloxyfop suitable alternative herbicides to treat large, glyphosate resistant FTR plants?
In brief: Possibly. Excellent results were achieved in pot trials conducted in an open environment, but will be more difficult to achieve in the field.
The details: Clethodim and haloxyfop were tested on FTR plants at the 24 to 28 leaf stage. Clethodim is registered for use against FTR in a number of summer crops, but without any crop competition many FTR plants survived the registered rate (90 g a.i. per ha), although weed biomass and seed production was severely curtailed.
Haloxyfop efficacy against FTR at this growth stage was 100 per cent at the registered rate of 80 g a.i. per ha.
A combination of these two treatments also resulted in 100 per cent control. The effective use of these two herbicides (both Group 1 [A]) relies on excellent coverage and application when the plants are actively growing. This is difficult to achieve in field conditions, which is why the label recommendations are typically for younger weeds.
A combination of clethodim and haloxyfop can provide good control of large feathertop Rhodes plant and curtail seed production.
These herbicides are known to readily select for resistant biotypes so when applied in a chemical fallow situation (with no competition), it is necessary to target small weeds with robust application rates and to apply a second knock with a contact herbicide, such as paraquat. 
Did you find any new and exciting prospects for controlling mature FTR plants?
In brief: Yes, it seems that there is a truly synergistic effect when isoxaflutole (Group 27 [H]; e.g. Balance) is mixed with paraquat.
The details: Neither of these herbicides provided useful control of FTR at the 40 to 50 leaf stage when applied individually. When mixed together, these herbicides achieved a higher level of weed mortality and prevented panicle production. For example, a tank mixture of isoxaflutole 75 g a.i. per ha, with paraquat 600 g a.i. per ha, resulted in 92 per cent FTR mortality and no panicle production.
Even at a paraquat rate of 300 g a.i. per ha mixed with isoxaflutole 75 g a.i. per ha, only 17 per cent of the large FTR plants survived when the mixture was applied to both the plant and the nearby soil – allowing uptake through both the leaves and the roots.
The benefit of this mixture may be reduced if the weed patch is dense, potentially reducing the amount of the isoxaflutole that reaches the soil. Even the prevention of seed set in large FTR plants is of significant value in managing the seed bank of this invasive weed, as FTR seed remains viable for less than 12 months.
Such a use pattern is not currently specified on product labels, although both products are registered for weed control in fallow situations.  
Web resources
Read the research paper.

Article
News

Testing informs herbicide choice

Buying a new property brings with it a number of unknowns and it can take some time for the new owners to become familiar with the soils, the terrain and the weeds.
When the Birch family of ‘Catalina Farms’, Coorow, WA purchased a neighbouring property, historic ‘Koobabbie’, they had reason to expect that herbicide resistance would be less of a problem because there had been limited use of herbicides on ‘Koobabbie’ in its 114 history of farming.
Daniel Birch, who farms with his wife Jen, parents Rod and Shelley, and long-term team member, Justin Passamani, says the purchase conveniently coincided with the opportunity to be involved with independent herbicide resistance testing in 2020.
“The testing was arranged through the Liebe Group and conducted at the Australian Herbicide Resistance Initiative,” he says. “We were keen to test some theories we had about resistance status of weeds on Catalina and also to get some baseline information about Koobabbie to help us plan our herbicide program.”
Daniel Birch of ‘Catalina Farms’, Coorow, WA says the big take home message from recent herbicide resistance testing was the power of mode of action mixtures.
The testing revealed a number of things that surprised the Birches. To start with, they found there was Group 2 [B] resistant ryegrass in paddocks on Koobabbie that had no history of Group 2 herbicide use.
“This demonstrated just how easy it is for herbicide resistance to move in seed or hay, or on machinery,” says Daniel. “Obviously we can use this information to avoid using chemistry that we know has little to no efficacy on ryegrass.”
“The other major finding was that Group 12 [F] resistance in wild radish was much higher than we expected across the farm,” he says.
This has led the Birches to include more premium products in their program to target resistant ryegrass and wild radish, and drive down the weed seed bank as quickly as possible. On the flip side, they also discovered that they can save money by using trifluralin at lower rates in seasons with good growing conditions, where there is less need for a long residual effect.
“In those years where the crop gets off to a good start, the crop competition effect kicks in early to suppress weeds,” says Daniel.
By taking on board the resistance testing results from weed seed samples collected across the state, Daniel was reassured by the fact that the resistance issues they faced were essentially the same as other growers.
“The big take home message for us was the power of mode of action mixtures,” he says. “From the overall survey results across Australia, the resistance frequency to stand-alone pre-emergence herbicides ranged from 10 to 34 per cent, yet resistance to herbicide mixtures ranged from 0 to 6 per cent.”
Armed with knowledge about the resistance profile of their weeds, the Birches are combining some older chemistry with newer, premium herbicides for maximum effect.
The AHRI resistance testing program is led by Dr Roberto Busi. In 2019, annual ryegrass seed samples from 298 farms were submitted, representing 579 populations from four states in Australia, and these were tested for resistance to 21 herbicides applied at the recommended rate – 12 standalone and nine two-way mixtures.
In total, 15 876 individual resistance tests were conducted to screen two million seeds against registered herbicides and herbicide mixtures at the recommended label rate.
Dr Busi says the mixtures that growers can confidently incorporate in their annual ryegrass program are trifluralin + Sakura mix, Luximax + triallate, and clethodim + butroxydim.
“When applied at full rate for each component, these mixtures can achieve a better outcome than the same herbicides applied as stand-alone treatments against annual ryegrass with known resistance,” he says.
For wild radish, 200 samples were tested over a period of two years and resistance to Groups 2 [B], 4 [I] and 12 [F] were all over 50 per cent resistant. At 70 per cent resistant, Group 2 [B] herbicides should probably be dropped from most wild radish herbicide programs and Group 4 [I] is under threat.
“In 2021, we found that mixing Group 12 [F] with Group 6 [C] herbicide bromoxynil vastly improved control of wild radish,” he says. “From 51 per cent resistant to Group 12 [F] down to less than 15 per cent of samples resistant to the 12 [F] plus 6 [C] mixture.”
“It is important to emphasise that herbicide resistance testing is conducted on small, actively growing weed seedlings in a glasshouse environment,” says Roberto. “In the field, spray failures can easily occur, even in susceptible weed populations, if the herbicide is applied under the wrong conditions or to plants that are too large or stressed. This is particularly true for wild radish.”
AHRI Podcast: Interview with Daniel Birch about herbicide testing
AHRI Insight: Mixtures rock
Herbicide testing options

Article
News

Safe sorghum planting while controlling weeds

Pre-emergent herbicide, metolacholor and S-metolachlor, have been used in Australia primarily to control grass weeds for over 40 years. To date, no instances of resistance to this active ingredient have been documented in Australia and even internationally the few cases of resistance are in broadleaf weeds only. Resistance in northern summer grasses is probably low at present.
Syngenta’s field biology manager, Rob Battaglia, says some recent changes to the label use patterns and the launch of a new seed safener product will further expand the usefulness of S-metolachlor products, such as Dual Gold® and Primextra Gold®, in summer crops while protecting sorghum seedlings from herbicide damage.
Syngenta’s field biology manager, Rob Battaglia, says the new use patterns for Dual Gold® in sorghum, cotton and fallow centre on extending application flexibility and residual activity of the herbicide on target weeds.
“S-metolachlor is registered for use in a wide range of crops, including sorghum, maize, sweetcorn, soybean, sunflower and cotton, as well as in fallow situations,” he says. “The new use patterns in sorghum, cotton and fallow centre on extending application flexibility and residual activity of the herbicide on target weeds.”
In sorghum, a rate of 1.0 to 2.0 L/ha can be applied either as a single application before the crop or weeds emerge, or as a split application pre and post crop emergence (up to 6-leaf stage). Similarly, the full rate can be applied after harvest to establish the fallow or 1.0 to 1.5 L/ha can be applied pre-emergent to weeds at fallow establishment followed by 0.5 to 1.0 L/ha within 4 weeks. Be sure to observe replant intervals when planning the next crop.
In cotton, a single application of 1 L/ha either pre-emergent (before, at, or immediately after, planting), over-the-top or directed stand-alone spray or over-the-top mixed with Roundup Ready herbicide on Roundup Ready FLEX® cotton.
“There are several factors that affect the length of effective residual activity of S-metolachlor, some of which are outside the grower’s control,” says Rob. “The product needs to be incorporated and has interactions with rainfall, temperature, soil type, soil organic matter and stubble. Having more flexibility in the application timing gives growers the ability to compensate for some of these factors and control new waves of weed germinations for longer.”
Untreated strips are a good indicator of the seed bank and potential weed burden in a field. The pre-emergent herbicide treated area on the left has far fewer weeds than the untreated section of the field on the right, which suffered significant yield loss due to feathertop Rhodes grass infestation.
S-metolachlor is only active on weeds that have not yet emerged and has no effect on weeds that have already emerged from the soil or that do not come in contact with the herbicide as they emerge from the soil. It is essential to control already-emerged weeds first and then apply the pre-emergent to control subsequent flushes of weed germinations.
“There are some situations where the residual herbicides will appear to be less effective than they should, but this can often be attributed to compromised application timing, limited rainfall and soil conditions, rather than herbicide performance,” says Rob. “The difficultly in achieving perfect application timing and incorporation with rainfall is one of the main reasons why the new use patterns for Dual Gold® have been registered. Pre-emergent herbicides are best used within the WeedSmart Big 6 integrated weed management program and not as a stand-alone control measure.”
While other crops listed on the S-metolachlor label can metabolise the herbicide, sorghum requires a seed safener to protect the germinating plants from the herbicidal effects of S-metolachlor. The new Epivio C® seed safener replaces Concept II® and provides better overall protection for sorghum seed.
S-metolachlor damage is seen as distorted and twisted growth in sorghum, the rightmost plant is unaffected (protected by seed safener).
In Syngenta’s product development trials in Queensland and NSW, they measured an 11 per cent increase in plant stand and a 7 per cent increase in sorghum yield in crops where the seed was treated with Epivio C®compared to Concept II®. Epivio C® has also demonstrated improvements in seed safety and shelf-life for carry-over seed.
“Epivio C® is applied as seed treatment and when the seed is planted into moist soil the product is taken up into the plant and improves the metabolism of the herbicide in the seedling, resulting in no crop symptoms,” says Rob. “The result is better crop establishment and healthier plants that can better compete against weeds that germinate later in the season.”
Epivio C plot trial demonstrating the benefit of the seed safener in supporting robust germination and establishment. No safener (left) compared to Epivio C safener (right).
There is evidence that growers can maintain crop yield and reduce summer grass seed production by planting sorghum crops at a density of 10 plants/m2 and a row spacing of 50 cm.
The WeedSmart Big 6 includes diversity in crops and pastures, crop competition and mixing and rotating herbicide mode of action groups.
More information

Podcast: Seed safener explainer (starts around the 22 min mark) 
Article: Weaponise sorghum crops to take out feathertop Rhodes grass and awnless barnyard grass

Article
Ask an Expert

Can pulse cover crops tackle multi-resistant ryegrass in irrigated systems?

The best weed control comes from tactics that also bring other benefits to a farming system.
Greg Sefton, principal agronomist with Sefton Agronomics in the Riverina, says multi-resistant annual ryegrass is becoming a major problem in irrigated systems.
Greg Sefton, principal agronomist with Sefton Agronomics in the Riverina, says legume cover cropping is providing effective control of multi-resistant annual ryegrass in irrigated systems.
“Herbicide resistance can move easily through irrigation areas, particularly when the control methods used on the supply channels are limited to just a few herbicides,” he says. “The ryegrass here is generally accepted to have resistance to glyphosate (Group 9 [M]), Group 1 [A] such as clethodim, Group 2 [B] and Group 3 [D], such as trifluralin. Growers are now relying heavily on Group 15 [K] products such as Sakura, and doing their best to rotate out of the problem.”
To regain control, Greg is working with growers to incorporate a multi-purpose fallow crop such as field pea into the system as a winter fallow clean with the added benefit of contributing biological nitrogen into the soil ahead of planting rice or wheat. 
Earlier maturing varieties of field pea provide better weed control options than Kaspa field pea, chickpea and lupin, all of which generally mature later, sometimes after the target weeds have set seed.
“A competitive pulse crop terminated at maximum biomass is an excellent way to reduce weed seed set,” says Greg. “It is a cultural control that also enables the use of some herbicides that are rarely used in our system. Combining the herbicide and cultural methods in the WeedSmart Big 6 is an effective way to keep our cropping options open and to maximise the value of applied water.”

What is the best fit for the legume crop as a winter clean?
In brief: In the Riverina, the optimal place in the rotation is ahead of rice.
The details: Fields selected for rice production are usually bare fallowed for the preceding winter. The aim of the fallow is to control weeds and conserve soil moisture.
Some growers are having success with field pea sown in May as a winter cover crop then terminated for silage or as a brown manure in early September. This fits well with preventing seed set in annual ryegrass, including late germinating plants.
Field pea is a competitive legume and can suppress weed germination and growth when planted in the most competitive configuration possible with minimal soil disturbance and no gaps.
A knockdown treatment of glyphosate (Group 9 [M]), clopyralid (Group 4 [I]) and carfentrazone (Group G [14]) is applied at planting then a mix of pendimethalin (Group 3 [D]), clomazone (Group 13 [Q]) and paraquat (Group 22 [L]) is applied after an irrigation flush to initiate rice germination and prior to rice germination to knockdown both newly emerged barnyard grass (BYG) and persisting ryegrass. This provides a double knock on ryegrass whilst applying a pre-emergent herbicide for barnyard grass in the rice phase.
When implemented once every 4 or 5 years, with a diverse rotation of winter and summer crops in-between, growers can keep a lid on herbicide resistant annual ryegrass populations. 
Field pea is a competitive legume crop that can reduce annual ryegrass germination in the paddock and halt encroachment from the crop borders.
How do you manage weeds on the non-crop areas?
In brief: The same herbicide mix is applied to the whole paddock, including the weeds growing in the check banks.
The details: Weed seed, often carrying herbicide resistance genes, travels easily through irrigation systems and can colonise non-crop areas. Seed from these plants readily infests the cropping areas if not controlled effectively. The control measures used on non-crop zones are often limited to herbicide tactics, so it is important to make sure the herbicide is applied to maximum effect to prevent seed set.
Farm hygiene and physical removal of isolated weeds will also have a positive impact on weed seed production. 
What farming system benefits come with growing a legume cover crop?
In brief: A legume crop grown for biomass rather than grain can improved soil tilth and reduce crusting on some sodic soils. This practice also allows better soil nutrition management and keeps the grower’s options open if the water allocation situation changes.
The details: The field pea crop will fix atmospheric nitrogen and this allows the grower to use 100 to 150 kg/ha less urea to grow the following rice crop without any yield penalty. If there is insufficient irrigation water available for a rice crop, then the fixed nitrogen is still available for a winter crop of canola or wheat.
The phosphorus fertiliser required for rice can be applied when the field pea crop is planted, giving the phosphorus time to become more available in the soil and ready for uptake when the rice is planted.
Field pea is quite drought tolerant, so if irrigation water is not available for rice, the field pea can be grown through to harvest the grain and will usually yield 0.7 t/ha, which can be more profitable than, say, a 1 t/ha drought-affected wheat crop.
Building an integrated farming system based on methods that have multiple benefits is fundamental to staying ahead of weed pressure.
Practical tips for growing field peas as a brown manure crop
Pulses to attack weeds on many fronts

Article
Ask an Expert

Can multi-species planting provide effective weed control?

Crop competition is one of the most effective weed control tools available to growers, but some crops simply don’t have a competitive edge.
Dr Andrew Fletcher, a farming systems scientist with CSIRO, says companion planting and intercropping is an option that growers can consider to bolster the competitiveness of an otherwise uncompetitive but valuable crop in the rotation. International research suggests that it can!
Andrew Fletcher, CSIRO farming systems researcher sees potential for multi-species plantings to compete with weeds. Photo: GRDC
“When two or more species are grown together they can occupy ecological niches that might otherwise be taken up by weeds,” he says. “Multi-species plantings have several potential benefits including increased crop yield and improved soil health, but the right combination can also reduce weed biomass by over 50 per cent.”
Multi-species plantings can be quite challenging to integrate into a grain cropping rotation but are more easily used in mixed grain and livestock operations and in intensive pastures for dairy cattle. International research suggests there is a significant untapped opportunity to increase the use of these systems in Australian grain production systems. However, relevant Australian data is scarce and more research is required to understand this untapped potential in Australian systems.    
A mixed-species cover crop can provide multiple soil health benefits, grazing and fodder for livestock and weed control through crop competition and stopping weed seed set.
“Crop competition is a non-herbicide pillar in the WeedSmart Big 6, with the potential to do some serious heavy lifting in terms of weed control,” says Andrew. “Intercropping and companion planting offers a means to bolster the competitiveness of some crops and to keep them in the rotation without risking a weed blow-out.”
What is intercropping, companion planting and mixed-species planting?
In brief: These systems all involve planting two or more crop species together. The combinations are almost limitless.
The details: Intercropping involves planting two or more species together and harvesting the grain of multiple crops. This generally relies on the grain species having different size seed and compatible harvest times.
Companion planting involves two or more species planted together with the intention to harvest grain from one species only after grazing or terminating the other species before seed set.
Sowing a low-growing species like clover between the rows of cereal can compete with weeds in the inter-row area, fix nitrogen and provide the basis of a pasture after the cereal grain is harvested. This is one example of companion planting.
Mixed-species planting is used to describe plantings of several species grown together primarily for the soil health benefits, and that may have potential for grazing and or forage conservation.
How do these systems suppress weed growth?
In brief: These multi-species systems are designed to take up the ecological space that might otherwise present and opportunity for weeds to fill.
The details: Intercropping and companion planting provide additional weed control in situations where one of the species is a relatively poor competitor as a sole crop. By maximising competition, weed growth is suppressed by up to 58 per cent compared to the least competitive species grown on its own. If a competitive crop such as barley is sown in the most competitive configuration possible, there is little additional benefit from adding a second species.
The downside of using this multi-species strategy for weed control is that in-crop herbicide options the choice of herbicides is limited. This is mainly due to the common combinations being a grass crop with a legume or brassica, meaning grass and broadleaf herbicide options can’t be used, except for when one species is terminated. This needs to be factored into decisions around intercropping and companion cropping.  
What are the best-bet combinations for enhanced weed control?
In brief: It depends on the farming system and the other reasons for considering a multi-species planting.
The details: If the aim is to produce grain, the species selected should have easily separated seed. A well-known example is peaola (field pea plus canola). A recent review of historical trials showed that the median yield increase was 31 per cent compared to sole crops of peas and canola, but the weed control effects of peaola in Australia are unquantified.
An effective companion planting combination is wheat undersown with tillage radish and a legume. The broadleaf companions are sprayed out at stem elongation, leaving the cereal to mature through to harvest.
If there is livestock in the farming system, dual purpose combinations such as grazing canola plus vetch and oats can provide excellent weed suppression. This mix could be grazed and then terminated as hay or silage at stem elongation.
Multi-species plantings add a layer of complexity to the farming system, but many growers have taken on the challenge and are reaping the rewards in crop yield, soil health and weed suppression.

Article
News

Investigate adverse experiences when using herbicides

A shuttle of glyphosate applied over the top of a Roundup Ready cotton crop was recently shown to also contain a damaging level of 2,4-D impurity, resulting in significant crop injury and yield loss.
The grower involved did not accept the suggestion that the crop damage was due to poor sprayer decontamination or spray drift from a fallow application of 2,4-D, and he was able to prove the problem was due to product impurity.
2,4-D herbicide injury in cotton after the crop was sprayed with glyphosate product contaminated with 2,4-D.
Other shuttles of the same batch may have been applied to fallow weeds where the residual 2,4-D in the glyphosate would have gone unnoticed. Full rate 2,4-D in glyphosate is known to compromise glyphosate efficacy, but studies of low-rate 2,4-D impurity in glyphosate could not be found.
Where can impurities come from?
While the agricultural chemical manufacture and supply chain in Australia is considered first-class and is highly regulated, there is an acceptance that the nil-impurity requirement for the manufacture of agricultural chemicals is unattainable in facilities that use multi-purpose equipment for synthesis, formulation and packaging of products.
Companies therefore apply their own quality assurance standards before releasing products for distribution and sale. If the level of risk posed by certain residual impurities in a product is underestimated, there is potential for instances of crop injury, pesticide residue in produce or poor performance of the product on the intended target weed, fungus or pest.
Mistakes can and do happen within the manufacturing process and chemical supply and distribution chain. To ensure that risks of contamination are minimised and that quality assurance protocols are followed carefully, it is important that any breaches or errors are identified quickly, reported and investigated.
Keep good records of each spray event, including batch numbers of applied product, to help identify the cause of adverse experiences with herbicides.
There are two important things to note: firstly, the current regulations specify that crop protection products must contain nil impurities (other than manufacturing impurities listed in the APVMA standard); and secondly, companies are required to recall product batches when contamination issues are identified. The Australian Pesticide and Veterinary Medicines Authority (APVMA) oversees a highly regulated system of registration, compliance and enforcement on crop protection products.
Assess potential application issues
When misapplication (wrong product applied, incorrect mixing, contaminated product etc) occurs, symptoms of affected plants are usually uniform throughout the treated area. It is often suggested that poor application technique or poor sprayer decontamination is the reason for crop injury or poor weed control results – suggesting a grower ‘own-goal’. Such potential errors must be considered, but if best practice spray techniques and spray rig decontamination procedures have been followed, product impurity should also be considered and investigated.
The chemistry of the product will determine the risk of residues being held within the tank and spray lines of the application rig. This is why there are differences in the sprayer hygiene requirements after using particular products.
Most modern spray rigs have impervious rubber and plastic, or stainless steel components, drastically reducing the risk of chemical absorption and subsequent extraction. Residues on the rubber surfaces are the main concern, and all registered cleaners will physically remove residues when used as directed, but cracked rubber components can present a contamination risk. All filters/strainers must be cleaned and all actuators and taps musts be cycled as the cleaner is run through the spray boom and tank loading system, agitators and tank.
Crop injury or poor weed control that is associated with just one sprayer tank load would suggest sprayer contamination. Effects from contaminated tanks are usually worse at the beginning of the spray run, with damage diminishing with spraying and tank reloading. The field pattern can provide clues to the sprayer filling routine in the field where the crop damage occurred.
The other major reason commonly cited for crop injury in spray drift. Although there is always some small amount of drift when agricultural chemicals are sprayed from a ground rig, the amount is down to ‘virtually safe’ levels within a few tens of metres. If the conditions are very windy, or the boom is too high, or the droplet size too small, spray could drift a few hundred metres from the application ground rig.
Spray droplets may travel a few feet to several kilometres from the targeted area, depending on weather conditions and spray application; but the potential for drift damage decreases with distance because droplets are deposited or become diluted in the atmosphere. The pattern of injury is normally seen most prominently on the section of the field closest to the sprayer that generated the spray drift, and decreases across the field.
During inversion conditions, a similar amount of product is subject to drift, but the drifting product will not dilute as much in the air, so concentrations at specific locations can be higher than expected in non-inversion conditions.
What to do if your crop is damaged or weeds don’t die as expected?
Along with several other possible causes, unintended application of contaminated product should be considered as a potential explanation for crop injury or poor weed control.
Keep in mind that if product impurity is the problem, it is most likely due to a low-dose effect that may be difficult to diagnose or may take longer to express in the target weeds or susceptible crops.
Finding the cause of an ‘adverse experience’ with herbicide is one of the most important reasons to keep accurate and detailed spray records.
If a problem occurs:

Take detailed, time-stamped photographs of the crop or weeds and record everything you know about the crop or fallow management, weather conditions in the weeks prior to the damage being seen, spray history of the field etc. If possible, geotag the photos so they can be easily associated with the correct field.
Record the relevant batch numbers of the chemicals used, which can be checked against the retention samples at the factory if necessary. Collect samples from drums of product used prior to the injury being observed (up to 14 days prior to symptoms being obvious). When you take samples, make sure there are witnesses who can vouch for the voracity of the evidence you have collected. Testing for one impurity (e.g. 2,4-D in glyphosate) costs less than $500 per sample.
Document the injury over time. For example, injury in cotton from low rates of 2,4-D will grow out in two weeks, but injury from higher rates, could last three to four weeks and are the most likely to result in yield loss. Similarly with weeds although the impact may be more difficult to document.
Mark out the affected area in the field to help assess crop yield loss at the end of the season. Note the pattern and intensity of the problem across the field.
Eliminate as many possible causes as you can. Re-assess the application technique and equipment, consider the pattern of damage in the field, look at the weather conditions for the relevant period of time and so on.
Test for herbicide resistance in weeds.
Report the crop damage or poor weed control. The APVMA administers the Adverse Experience Reporting Program, which allows anyone to report a problem with an agricultural chemical, including crop and plant damage, for example, plant death, severe stunting or significant yield loss. This is also the way to report poor weed control outcomes.

The APVMA acknowledges there is likely under-reporting of adverse experiences. The magnitude of under-reporting is unknown and provides limitations in quantifying product risk.
Investigations of spray drift are conducted by the relevant state government body, for example: NSW EPA (call Environment Line: 131-555), Biosecurity Queensland (call 132-523) and Chemical Standards Officer (Victoria) (call 03 5430 4463). Industry organisations will also support growers impacted by chemical damage to crops.
If the damage is due to factors other than spray drift, the affected party will need to take legal action and seek compensation themselves.
Related resources
Is poor weed control due to herbicide resistance?

Article
Ask an Expert

What can I do at harvest to reduce my future weed burden?

As crops mature and harvesters begin reaping, consider the potential fate of seeds ripening on weeds that escaped in-crop control measures.
Peter Newman, WeedSmart’s western extension agronomist, says harvest time is an important opportunity to assess weed burden across the farm and be proactive about driving down the weed seed bank.
“Harvest can either be a super-spreader or a weed suppressing event,” he says. “Small patches of weeds can quickly expand when seed is blown out the back of the harvester. On the other hand, the harvester can be a powerful weed management tool if any one of the harvest weed seed control options are implemented.”
WeedSmart’s western extension agronomist, Peter Newman says efforts made to reduce the spread of weed seed at harvest will soon pay off for growers.
Australian growers have led the world in inventing and adopting harvest weed seed control tools such as impact mills, chaff carts, chaff decks and chaff lining, all of which can reliably destroy over 90 per cent of the weed seed that enters the front of the harvester.    
“In addition to harvest weed seed control there are several other actions in the WeedSmart Big 6 that growers can implement just prior to, during and immediately after harvest that will make a measurable difference to the weed burden in future growing seasons,” says Peter. “The WeedSmart Big 6 tactics are scientifically-proven to reduce the risk of herbicide resistance through diverse herbicide use and cultural control to prevent weed seed set.”
What can I do before harvest to manage late emerged weeds?
In brief: Scout for and map weedy patches. Consider sacrificing small areas of high density weeds. Swathing can be a very effective way to stop seed set of late emerged or resistant weeds. Collect weed seeds for herbicide susceptibility testing.
The details: Growers across Australia use a variety of methods to map weeds – from the simple to the sublime. ‘Dropping a pin’ using the tractor’s GPS mapping system as you travel through a weedy section when spraying or harvesting is easy and provides useful information about the distribution of weeds in the paddock. Many growers have their own drones and use them the collect images or video footage of the crop that can be viewed or analysed to identify high density weed patches.
Collect seed for herbicide susceptibility testing – knowing what still works is vital information for planning next season’s herbicide program. There are three herbicide testing facilities in Australia that are equipped to test weed seed samples – Plant Science Consulting, CSU Herbicide Resistance Testing and UWA Herbicide Resistance Testing.
Collecting weed seed before or at harvest is the most common method used. The collected seed must be mature, from green to when the seed changes colour. Before harvest, collect 30 to 40 ryegrass seedheads or several handfuls of wild oats seed. After harvest, it is common to find seedheads still in the paddock or samples of contaminated grain can be sent for analysis.
Keep samples from different locations separate and details noted on the bag. Only use paper bags (double layer) to collect and send seed samples. Ensure bags are sealed so that the samples don’t mix during transit.
Which harvest weed seed control tool is best for my situation?
In brief: There are six harvest weed seed control tools used in Australia – impact mills, chaff decks, chaff lining, chaff carts, bale direct and narrow windrow burning. Choose the one that best suits your system and budget.
The details: Impact mills are best suited to continuous cropping situations. Residues are retained and evenly spread. Chaff decks have lower capital cost and are well-suited to controlled traffic situations. Chaff carts are popular with grain producers who also run livestock. Bale direct is also expensive but has a good fit in locations where there is access to straw markets. Chaff lining is currently the best ‘entry level’ system and can be used in CTF or non-CTF systems, with best results where the harvester runs on the same track each year. Chaff lining has essentially superseded narrow windrow burning, overcoming the time required and risks involved in burning and reducing the loss of nutrients from the system.
If you haven’t used harvest weed seed control tools before, it doesn’t take long to build and fit a chaff lining chute ready for use this harvest season.
What should I be ready to do straight after harvest?
In brief: Spraying weeds immediately after harvest is fairly common practice. Weeds present may be close to maturity or fresh germinations of summer-active weed species.
The details: Some growers get in early with knockdown herbicide applied under the cutter bar when swathing barley or canola. Consider using the double knock strategy, heavy grazing pressure and possibly a soil residual herbicide that is compatible with your planned crop rotation. Pay particular attention to any weedy patches identified before or during harvest. Stopping seed set at every opportunity is the crux of an effective weed management program.
Give some thought to what might be the underlying cause of weedy patches – fixing problems such as pH and soil nutrition imbalances, waterlogging and spray practices that routinely deliver low doses of herbicide.

Article
Ask an Expert

How can I set up my summer crops to help manage weeds?

Belinda Chase, agronomist at Dalby Rural
It has been a few years since growers on the Darling Downs have been able to plan for a summer crop. With the uncertainty surrounding planting opportunities came some hesitancy to fully invest in weed control.
Belinda Chase, an agronomist at Dalby Rural Supplies, says it is a welcome change to be actively planning for summer cropping and being more proactive with weed control leading up to planting.
“Our main weeds here over summer are feathertop Rhodes grass, barnyard grass and broadleaf species like flaxleaf fleabane and peach vine,” she says. “In terms of known resistance we have some Group 1 [A] and glyphosate resistance in barnyard grass and paraquat plus glyphosate resistance in tall fleabane. Annual ryegrass seed in hay from other states has also established in small areas, potentially bringing resistance that has evolved elsewhere.”
With more soil moisture than growers have had for several years, many have been planning ahead to manage weeds in winter fallows destined from summer crops – mainly cotton and sorghum, along with some millet, corn, mungbean and sunflower.    
“Pre-emergent, or residual, herbicides have played an important role in keeping weed numbers low in winter fallows,” says Belinda. “The next rain event will most likely also be the trigger for planting, and weed control in those early weeks of crop growth will be crucial.”
The WeedSmart Big 6 tactics can be applied to all crops to reduce the risk of herbicide resistance through diverse herbicide use and cultural control to prevent weed seed set.
What are the resistance risks with pre-emergent herbicides in summer crops?
In brief: Avoid over-using the same mode of action group throughout the crop rotation.
The details: There has been widespread use of knockdown herbicides with residual activity, such as Group 14 [G] flumioxazin (e.g. Valor), in winter fallows to maintain low weed numbers. With multiple use patterns in fallow (on its own or as a tank mix ‘spike’) and post-sowing pre-emergent in a number of summer crops, there is a risk that resistance to this mode of action could develop. There is currently no known resistance to Group 14 [G] herbicides in Australia but resistance has been identified in both grass and broadleaf species in other countries.
Valor has a plant back period of one month pre-sowing for pigeon pea, maize, sorghum and navy bean, two months pre-sowing for cotton, sunflower and mungbean and up to nine months pre-sowing for canola. It can be applied after sowing and pre-emergent to protect the crop as it establishes.
Tank mixes and co-formulations are an effective way to reduce the risk of resistance to Group 14 [G] herbicides. Significant escapes must be prevented from setting seed.
Another option for pre-emergent weed control in sorghum is s-metolachlor, a Group 15 [K] herbicide such as Dual Gold. Applied as a split application before and immediately after planting sorghum gives optimal weed control, provided the seed safener (Concep II or Epivio C) has been applied at planting.
Atrazine, a Group 5 [C] herbicide, also provides a pre- and post-emergence option for broadleaf weeds and some pre-emergent control of annual grasses like barnyard, crowsfoot, summer and love grass in crops such as sorghum and maize.
How can I best incorporate imi-tolerant summer crops?
In brief: Imi-tolerant (IT) hybrids are now available for sorghum, maize, sunflower and soybean, providing for alternative in-crop control options for a range of grass and broadleaf weeds.
The details: IT sorghum seed is in short supply this year, but there are other options to consider. Growers who have Group 1 [A] resistance in barnyard grass or who are looking for alternative products to control or suppress other key summer weeds may consider growing these herbicide-tolerant crops.
With an imi-tolerant hybrid, growers will be able to safely plant into paddocks where imidazolinone (Group 2 [B]) chemistry has been recently applied, say after an IT maize, wheat, canola or pulse crop, negating the current 12+ month plant-back requirement, which otherwise restricts the choices that growers have in summer. In this situation it is advisable to avoid applying Group 2 [B] herbicides to the current crop to break the ‘imi-cycle’ that can develop where imi herbicides are used in successive crops – resulting in a high risk scenario for the evolution of herbicide resistance.
The second major benefit is that an imi-tolerant hybrid can be planted into a paddock that has a broadleaf weed burden—a situation that would not be advisable for a non-IT variety.
Imi-tolerant (IT) hybrids are now available for sorghum, maize, sunflower and soybean.
Is patch management a good tactic for feathertop Rhodes grass?
In brief: Feathertop Rhodes grass is a serious challenge, but summer cropping can help reduce the weed seed bank.
The details: Controlling FTR can be easier in a competitive mungbean crop on narrow row spacing, than in sorghum and sunflower, which are typically grown on wider row spacings and do not quickly cover the inter-row.
Controlling feathertop Rhodes grass can be easier in a competitive crop on narrow row spacing, where the crop quickly covers the inter-row.
After applying suitable pre-emergent herbicides (if FTR numbers are low) or cultivating if FTR pressure is high, do everything you can to maximise crop competition. Consider narrower row spacing, optimal plant density, avoid planting gaps and provide adequate crop nutrition.
After the crop has established, use inter-row cultivation where necessary and harvest early. If there are areas with low density escapes of this prolific seeding weed, chipping is worthwhile before the seed sets. If patches of escapes are evident it can be very beneficial to accept a ‘short-term pain for long-term gain’ by ploughing or spraying out the affected patch of crop before the FTR plants set seed.
At harvest, record any patches of FTR and return soon after harvest to remove established plants and apply a pre-emergent herbicide to manage new germinations.
Further information

Feathertop Rhodes grass and sorghum – does this work?
Avoid getting stuck in the imi-cycle
Competitive sorghum to reduce FTR and BYG pressure

Subscribe to the WeedSmart Newsletter