Read time: 5 minutes

Confirmed resistance to the double-knock tactic in tall fleabane  

The double-knock is a widely-utilised and highly effective weed management tool but without monitoring and removal of survivor weeds, the commonly used ‘glyphosate followed by paraquat’ system is still open to failure.

For weeds that have a natural tolerance to glyphosate, the double-knock has provided growers with an excellent tool to take two swipes at weeds like fleabane, sowthistle and feathertop Rhodes grass and achieve a greater level of control.

NSW Department of Primary Industries weeds researcher, Dr Md Asaduzzaman (Asad) has uncovered disturbing evidence of double-knock resistance in tall fleabane (Conyza sumatrensis) samples collected during weed surveys funded by the Cotton Research and Development Corporation (CRDC).

NSW Department of Primary Industries weeds researcher, Dr Md Asaduzzaman (Asad) has uncovered disturbing evidence of double-knock resistance in tall fleabane (Conyza sumatrensis) samples collected during weed surveys funded by the Cotton Research and Development Corporation (CRDC).

“Our surveys in 2016 and 2017 showed that cotton fields were generally weed-free but herbicide resistance is building in weeds along farm roadsides, drains and channels and around infrastructure,” he said. “We identified two tall fleabane biotypes that have resistance to glyphosate, paraquat and the double-knock tactic of an initial glyphosate application followed with an application of paraquat 7 days later.”

The rate response analysis showed that one of these biotypes is 4.9 times more resistant than the susceptible biotype, requiring 2.5 L/ha Paraquat-250 to kill 50 per cent of the plants from the resistant population compared to just 0.5 L/ha to achieve the same result in the susceptible population (see Table 1). While this level of resistance is generally considered ‘moderate’ it is clear that resistance is building and must be taken very seriously given the importance of the double-knock tactic in most cotton and grain production systems in Australia.

Table 1 Resistance levels of tall fleabane screened against paraquat, glyphosate and glyphosate + paraquat (R-resistant > 50% survival; DR-developing resistance < 50% and > 20% survival and S-susceptible < 20% survival)



Tall fleabane biotype



% Plant survived under

Paraquat-250 @ 2 L/ha Glyphosate-540 @ 1.2 L/ha Glyphosate followed by Paraquat (Double-knock)
TFB01 >75 100 75
TFB02 75 75 75
TFb-Suscept 0 0 0

These two populations, collected near Nandi, Queensland and Coleambally, NSW, are the first paraquat-resistant tall fleabane to be identified in Australia. Resistance to paraquat in this species has previously been recorded in Japan, Sri Lanka and Taiwan.

Location of confirmed cases of double knock resistance in tall fleabane.

“Although the tall fleabane plants from these two populations showed signs of herbicide damage, such as narrowing of leaves and slow growth, when the double-knock was applied, they were able to survive and produce seed,” said Dr Asad. “This species produces a large quantity of seed, germinates quickly and the seed can travel over 10 km in the wind so dispersal of paraquat / glyphosate resistance traits will be impossible to contain.”

Tall fleabane seedlings 28 days after the double knock (glyphosate + paraquat) tactic was applied.

This discovery makes tall fleabane the second species in Australia to have confirmed resistance to both glyphosate (Group M) and paraquat (Group L), the first being a population of annual ryegrass identified in Western Australia in 2013. Having demonstrated resistance to the dual application of these herbicides in the otherwise effective double-knock tactic is cause for great concern.

Weed populations take longer to evolve resistance to paraquat and glyphosate compared to some other modes of action, but it will happen after years of regular applications without survivor control.

Like other fleabane species, tall fleabane is susceptible to crop competition but flourishes in poorly competitive, wide-row crops such as dryland cotton. Combatting herbicide resistance and keeping weed numbers low will require the implementation of a wider range of weed control tactics rather than relying heavily on the double knock tactic.

“Growing more competitive crops and using a wider range of pre- and post-emergence herbicides and strategic tillage will help manage this weed,” said Dr Asad. “Above all is the need to monitor and remove any survivor weeds in line with the cotton industry’s weed control strategy of ‘2 + 2 and 0’ that recommends two non-glyphosate tactics in-crop plus two non-glyphosate tactics in the fallow and zero survivors.”

In other research Dr Asad is testing the opportunities for cotton growers to use cover crops to create additional opportunities for herbicide rotations, run down the seed bank and delay the adaption of weed populations by reducing the frequency of single modes of action herbicide use.

Paraquat resistance has previously been confirmed in 10 species in Australia, including flaxleaf fleabane (Conyza bonariensis).

Other resources

Related Articles

Related Articles

View all
Article
Ask an Expert

How does crop competition support other weed control tactics?

Crop competition is a quiet achiever in weed control that also has a synergistic effect when applied with other tactics. Read More...
Article
News

WeedSmart Big 6 for Mallee farms in NSW, Vic and SA

Get started with the WeedSmart Big 6 tailored for the Mallee region. Read More...
Article
Ask an Expert

Can faba bean crops outcompete sowthistle?

Faba bean crops have the potential to significantly curb common sowthistle, a problematic weed with widespread resistance to key herbicides. Read More...

Webinars

View all
Video
Webinar

How faba beans pack a punch against sowthistle

Research shows there are opportunities to alter the agronomy of faba beans to suppress sowthistle growth and seed production in crop. Read More...
Video
Webinar

Combat Velocity® resistant wild radish with the WeedSmart Big 6

AHRI researcher Dr Roberto Busi explains in this webinar how he discovered Velocity® resistant wild radish populations in two paddocks in the northern Wheatbelt of Western Australia. Read More...
Video
Webinar

No survivors – weed control in cotton, what does it look like in 2022?

Research Agronomist Eric Koetz and WeedSmart Northern Extension Agronomist Paul McIntosh discuss key weed control challenges cotton growers are facing. Read More...

Videos

View all
Video
Webinar

How faba beans pack a punch against sowthistle

Research shows there are opportunities to alter the agronomy of faba beans to suppress sowthistle growth and seed production in crop. Read More...
Video
Webinar

Combat Velocity® resistant wild radish with the WeedSmart Big 6

AHRI researcher Dr Roberto Busi explains in this webinar how he discovered Velocity® resistant wild radish populations in two paddocks in the northern Wheatbelt of Western Australia. Read More...
Video
Webinar

No survivors – weed control in cotton, what does it look like in 2022?

Research Agronomist Eric Koetz and WeedSmart Northern Extension Agronomist Paul McIntosh discuss key weed control challenges cotton growers are facing. Read More...

Factsheets

View all
Fact Sheet

Windrow burn chute for CASE harvester

CAD designs for a narrow windrow burning chute suited to a CASE header – suitable for adaptation to other harvester makes. Read More...
Fact Sheet

Wild radish factsheet

Increasing resistance to multiple herbicide modes of action is forcing growers to adopt diverse strategies to control wild radish. Read More...
Fact Sheet

Farm Practices Survey Report 2021

The report provides information on the adoption of a range of weed management practices on Australian grain farms. Read More...

Subscribe to the WeedSmart Newsletter