Read time: 7 minutes

Diverse approach to feathertop Rhodes grass control

As an early adopter of zero tillage and controlled traffic farming in Central Queensland, Brendan Swaffer is fully convinced of the benefits, and is well aware of the potential impact of weeds like feathertop Rhodes grass.

Since taking over the family farm near Clermont in 2007, Brendan and his wife Jody have been building a robust cropping program with wheat and chickpea in winter and, if soil moisture permits, dryland cotton and sorghum in summer across their 4000 ha of cultivation.

Brendan and Jody Swaffer, Clermont have reintroduced tillage to their zero till controlled traffic farming system to manage weedy patches, primarily feathertop Rhodes grass. Dryland cotton has also been a useful addition to the rotation and provides another opportunity to manage FTR.

“In the summer fallow our main weeds are summer grass, Johnson grass and fleabane but we are most concerned with the small patches of feathertop Rhodes grass that are appearing,” says Brendan. “We are using a mechanical and chemical double knock to manage these patches of FTR and it has been very effective for us in preventing its spread.”

Early in summer Brendon targets any patches of persistent weeds – mostly feathertop Rhodes that has survived under the winter crop. Starting with cultivation of the affected areas, Brendan then follows up a few days later with an application of metolachlor (Group K) to provide short-term residual control of any new germinations that are triggered by the cultivation.

“We might spend two days ploughing but only cultivate 150 ha in total,” he says. “For the rest of the year we carry a hoe in every vehicle and stop to chip out small areas of weeds when we see them. We have been enjoying the enormous benefits of zero till and controlled traffic since the 1990s – there is no going back to full cultivation, but it is a useful management tool to target weedy patches before they get out of hand.”

Preventing seed set for a couple of consecutive seasons is known to rapidly rundown FTR seedbank as the seed on the surface or even slightly buried only persists for 12 to 18 months.

Adding dryland cotton to their rotation has also helped minimise the spread of FTR. The Swaffers produced cotton in four of the five summers from 2010–11 to 2014–15, which enabled the application of Roundup Ready Plantshield to keep pressure on FTR and reduce seed set.

Brendan has built in several non-glyphosate weed control measures including cultivation, along with other knock-down and residual herbicides, to take the pressure off glyphosate in their farming system.

“Feathertop Rhodes grass is not a problem in conventional systems but the more area farmed the more difficult it is to keep clean,” he says. “It also seems to prefer scrub soils that are a bit lighter textured than the open downs country and alluvial soils we have on this property, giving us a slight advantage.”

The fallow starts with spraying out sorghum in June with glyphosate to kill the crop, make harvest easier and kill the weeds. During summer, Brendan applies glyphosate, 2,4D-amine and small amount of metsulfuron (Group B) as a tank mix to target weeds when they are small and actively growing after a rainfall event. The metsulfuron is targeting parthenium and can also provide an additive effect on glyphosate when applied in a tank mix.

After each spray application Brendan looks for, and manages any survivors or areas where the sprayer has missed, to minimise the number of weeds that escape and set seed later in the season. In recent years he has moved to more robust rates to ensure efficient weed control and to avoid the need to go over a paddock a second time.

With the variable rainfall experienced in Central Queensland, chickpeas are now the Swaffer’s most reliable crop, using moisture seeking planting techniques. “We can plant in April or early May on rain received in February by planting the chickpea seed up to 18 cm deep,” says Brendan. “Chickpea is the only crop that has a long coleoptile that allows emergence from such depth.”

Planting chickpea on 50 cm rows using moisture seeking techniques has established chickpea as the Swaffer’s most reliable crop. Brendan has found that a post-plant pre-emergence application of Terbyne (Group C) controls weeds up to canopy closure and no other in-crop herbicide is needed until the crop is desiccated prior to harvest.

“Emergence can take three weeks, but we can establish a crop on stored moisture and have it up and away before in-crop rain initiates a fresh flush of weed germination, giving the crop a distinct competitive advantage.”

The timing of a moisture seeking planting needs to factor in the frost risk in the district to avoid having the chickpea crop flowering when there is a high chance of frost.

In some years there is moisture higher in the profile, allowing both chickpea and wheat to be planted about 10 cm deep. Wheat is also planted a little later in the Clermont district than in other areas of CQ, to avoid frost. Most growers prefer to accept the small yield penalty for planting later rather than risking a crop failure.

“Strzelecki wheat is a slow maturing spring wheat of semi dwarf habit that is popular in CQ due mainly to its longer coleoptile length that allows us to plant to a depth of 10 cm,” he says. “But this variety is about to be re-classified to Hard 2 instead of Prime Hard and so many growers will be looking for alternative wheat for the future,” he says.

Strzelecki wheat has been a mainstay variety in the Clermont district because of its ability to emerge from a depth of 10 cm. A change in classification of this wheat will most likely drive growers to look for a replacement variety suited to the conditions.

Higher levels of crop competition can be achieved in the winter crops compared to the summer crops, with chickpea and wheat both sown on 50 cm rows. Brendan plants chickpea in his cleanest paddocks and uses a post-plant pre-emergence application of Terbyne (Group C) to control weeds up to canopy closure. No other in-crop herbicide is applied except for desiccation for harvest management. Brendon avoids using Balance due to the long plant-back period and the need for a lot of rain to breakdown the residual.

Sorghum crops are sown on single skip metre rows, with cotton planted in double skip configuration of 2 in and 2 out to optimise yield and quality. Brendan previously planted sorghum in solid 1 m single rows but has changed to planting a single skip – 2 in and 1 out – and increased intra-row plant density. The soil on the Swaffer’s property requires about 200 mm of steady soaking rain to fill the profile and initiate a summer crop planting. Last season there was no summer crop planted due to a lack of soil moisture however the outlook year is looking more promising for sorghum but they have not planted cotton this season.

“We are concentrating on achieving even intra-row spacing using a double disc precision planter to increase weed competition within the row,” he says. “This also promotes even maturity and reduces tillering. The combined effect encourages a shorter flowering period and makes grub and midge control easier, along with reducing the risk of ergot infection.”

Sorghum is planted in January and early February following an application of glyphosate, Dual Gold and 2,4D, provided there is no cotton planted nearby. Brendan also applies atrazine and fluroxypyr to provide in-crop weed control. Metolachlor applied in the fallow ahead of cotton provides some residual weed control but the main in-crop weed control strategy is RR Plantshield. Brendan puts far greater emphasis on timeliness of weed control than on specific rates and products.

At harvest, Brendan uses perforated screens in the header to remove as much Mexican poppy, and turnip weed seed and soil as possible out of the chickpea grain sample. He also keeps about 100 t of both chickpea and wheat seed that has been graded hard to ensure the cleanest possible seed goes back in the ground the following season.

Brendon does all his own spraying with a John Deere 4030R self-propelled sprayer and likes to keep their spray technology up to date. He considers the sprayer to be their main tractor now and changes the sprayer unit every 5 years or so to always have new gear that works well and minimal downtime.

“Our groundwater is quite hard so we use ammonium sulfate, especially when spraying out sorghum with glyphosate,” says Brendan. “Although we now have more access to rainwater, storing water is very costly so we have been assessing the difference between rain water and groundwater this year in terms of cost and efficacy on weeds. We expect to invest more in rainwater storage in the future.”

Being in full control of the spray program means Brendan can ensure his neighbours are always informed regarding cotton plantings and he only sprays when conditions are suitable. “When sensitive crops are nearby it is all about working in the right conditions and being careful about product selection,” he says.

Other resources

Mark Congreve explains the key features of FTR, considerations when developing a control strategy, fallow herbicide options and fallow application recommendations in a new series of Grains Research and Development Corporation (GRDC) Know More videos.

Related Articles

View all
Article
News

Never cut the herbicide application rate

Scientific studies have demonstrated that resistance can rapidly evolve in weeds subjected to low doses of herbicide. Some weeds can develop resistance within a few generations. Full rates when mixing herbicides too! When mixing herbicides it is important that each product is still applied at the full label rate to ensure high mortality. Applying different chemicals in one mix can provide an additive advantage. It is important to understand the mode of action of each herbicide on the plant when preparing a herbicide mix. This is just as important for pre-emergent grass weed mixes as it is for post-emergent mixes aimed at broadleaf weed control. ALWAYS READ THE LABEL. Surrounding weed seeds with a combination of pre-emergent herbicides with different modes of action can give a high level of control and help extend the useful life of all the chemicals used. The high level of control must be supported with additional control measures for all survivors. All products with different modes of action must be applied at full label rates for this to be an effective strategy.   Mixing two chemicals with the same mode of action can achieve some additional efficacy, however, the mix should deliver the combined full rate to ensure a lethal dose. The amount of stubble present and crop safety are all important considerations when mixing chemicals. For example, when using a tank mix of Avadex® and trifluralin to control ryegrass in wheat, the rates used will vary depending on the sowing system and level of stubble retention. Be sure to get good advice. Many herbicides on the market are a combination of two or more modes of action within the one product. These products must be applied at the full label rate to be effective. Having dual action does not negate the need to change herbicide products and rotate modes of action. Repeated use of any single strategy will reduce the effectiveness of that strategy over time.  
Article
News

Spray well – correct nozzles, adjuvants and water rates

Spray application is a technical field and growers need to make sure their equipment and application techniques are spot-on. The GRDC Spray Application GrowNote provides detailed information and about 80 videos to demonstrate key skills. Prevent spray-drift The focus of spraying herbicide needs to be on doing the job right so the weeds receive the correct dose and die, and this includes reducing the air borne fraction to a bare minimum. Bill Gordon’s 10 Tips for Reducing Spray Drift Choose all products in the tank mix carefully. Understand the product mode of action and coverage requirements. Select (and check) the coarsest spray quality that will provide effective control. Expect that surface temperature inversions will form as sunset approaches and will likely persist overnight and even beyond sunrise on many occasions. DO NOT SPRAY. Use weather forecasts to inform your spray decisions. Only start spraying when the sun is about 20 degrees above the horizon and when the wind speed has been above 4–5 km/hr for more than 20–30 minutes, and clearly blowing away from any adjacent sensitive crops or areas. Set the boom height to achieve a double overlap of the spray patterns. Avoid higher spraying speeds. Leave buffers unsprayed if necessary and come back. Continue to monitor conditions, particularly wind speed, at the site during the spray operation High water rates don’t have to slow you down Some growers are concerned that increasing the water rate when applying herbicide will slow down their spray operation and cost them money. However, the biggest financial loss during spraying usually comes from a failed spray job. To keep your spray operation as time efficient as possible when using more effective and reliable application volumes, you can: Use nurse tanks around the farm to reduce the time spent travelling back to a central re-fill point. Use a larger pump, e.g. 2.5 inch, to make re-filling quicker. Pre-mix the batch while the sprayer is operating. Many mixes can be held in the mixing tank for up to 6 hours. However, wettable granules and suspension concentrates will need agitation to keep them in solution. For pre-emergent herbicides in high stubble situations, carrier volume has a large effect on the level of control achieved. Across four trial sites Dr Borger’s research demonstrated that ryegrass control with trifluralin or Sakura® increased from 53% control when the carrier volume was 30 L/ha to 78% control when the carrier volume was increased to 150 L water/ha in high Water quality and mixing order Water quality is often overlooked as a possible contributor to herbicide failure and can lead to confusion over the herbicide resistance status of weeds on a property. Water should be considered as one of the chemicals in any mix, given that water quality varies markedly depending on its source. Getting the mixing order right is essential for effective spray results. Don’t start mixing until the water quality is right Podcast – Mixing herbicides Adjuvants Sometimes adding an adjuvant is beneficial and sometimes it is detrimental; and there is an art to knowing how to best deploy these additives. When weeds are susceptible to the applied herbicides, the effectiveness of adjuvants generally goes un-noticed. Correctly applied adjuvants can reduce the impact of low level herbicide resistance by helping to maximise the amount of herbicide taken up by the plant.
Article
News

Clean borders – avoid evolving resistance on the fence line

About one-quarter of glyphosate-resistant populations within broadacre cropping situations across Australia come from fencelines and other non-cropping areas of the farm. Along paddock borders, where there is no crop competition, weeds can flourish and, if not controlled, set lots of seed. The traditional approach has been to treat these weeds with glyphosate to keep borders clean but after 20-odd years this option is now failing and paddock borders are becoming a significant source of glyphosate-resistant weed seed. Weed researcher Eric Koetz said the limited options for managing weeds along irrigation infrastructure and other non-crop areas is a problem and is putting additional pressure on knock-down herbicides in irrigated systems. In some situations, cultivation can be used to kill the weeds and provide a firebreak, but on light soils this may pose an erosion risk and mowing or slashing may be safer options. Another possible tactic is to continue using herbicides but to ensure that a clean-up operation is carried out before any survivors can set seed. Some growers are choosing to increase the heat on weeds along the borders by planting the crop right to the fence and then baling the outside lap and spraying with a knockdown herbicide to kill any weeds and provide a firebreak. Another good option in some situations is to maintain a healthy border of vegetation using non-invasive grasses. In Queensland, buffel grass is a good example of a grass that can outcompete other weeds while not invading crop lands. If only herbicides are used on fencelines, resistance is inevitable. Surviving weeds on fencelines have no competition and access to plenty of soil moisture, so they set a lot of seed and resistance can easily flow into neighbouring paddocks. Other resources It’s time for a glyphosate intervention Farm hygiene cottons on – Cleave Rogan, St George What’s new in management of herbicide resistant weeds on fencelines? Keeping the farm clean – Graham Clapham, Norwin Don’t jeopardise glyphosate for clean fencelines Keeping fencelines clean Resistance risk to knock-down herbicides on irrigated cotton farms

Subscribe to the WeedSmart Newsletter