Read time: 7 minutes

Don’t sow wild oats

[or, How to prevent a wild oats invasion]

Ranked as the third most costly weed in Australian grain cropping, three weedy Avena spp. – wild oat, sterile oat and slender oat – are estimated to infest over two million hectares, causing crop yield losses of 114,596 t and a national revenue loss of $28.1 million.

In the southern and western regions, the main species found is wild oats (A. fatua), while in the northern region, sterile oat (A. sterilis ssp. ludoviciana) is the more problematic species. Both have evolved resistance to multiple herbicide groups in Australia.

QAAFI weed researchers Gulshan Mahajan and Bhagirath Chauhan have recently published a series of papers on their weed ecology studies of Avena spp., providing growers and agronomists with more information to use when formulating integrated management plans for these weeds in crops.

Practical tips

  • Both wild oat and sterile oat can survive in soil moisture conditions of 60 per cent water holding capacity (WHC). Sterile oat even produced seed at 40 per cent WHC.
  • Seedlings of these weeds can emerge from a depth of 10 cm, but greater emergence occurred from 2 and 5 cm depths. Emergence commenced at the start of winter (May) and continued until spring (October).
  • Early emergence plants produce the most seed, but later emergence plants can still produce enough seed to support reinfestation.
  • In a no-till system there is low persistence of seed on the soil surface. A 2-year assault on the weed seed bank can result in complete control of infestations.
  • Weed density of 15 wild oat and 16 sterile oat plants/m2 resulted in a 50 per cent reduction in wheat yield. Lower weed density (just 3 plants/m2) can still support reinfestation.
  • Sterile oat is a better candidate than wild oat for harvest weed seed control (HWSC).
  • Wild oat is best managed through early weed control (pre and post sowing) and strong crop competition.
  • An integrated approach to weed management can reduce Avena weed biomass by up to 90 per cent.

Experimental design features

We are summarising the finding from four related research papers:

  1. Biological traits of six sterile oat biotypes in response to planting time. https://doi.org/10.1002/agj2.20507
  2. Influence of soil moisture levels on the growth and reproductive behaviour of Avena fatua and Avena ludoviciana. https://doi.org/10.1371/journal.pone.0234648
  3. Seed longevity and seedling emergence behaviour of wild oat (Avena fatua) and sterile oat (Avena sterilis ludoviciana) in response to burial depth in eastern Australia. https://doi.org/10.1017/wsc.2021.7
  4. Interference of wild oats (Avena fatua) and sterile oats (Avena sterilis ludoviciana) in wheat. https://doi.org/10.1017/wsc.2021.25

Detailed findings

Sterile oats growth and seed production for early and late emergence cohorts

Six biotypes of sterile oats were collected from sites in southern Qld and northern NSW and planted in field conditions at the Gatton research farm in the winter cropping seasons of 2018 and 2019. The weed seed was sown early, mid and late season and the growth and reproductive potential of the six biotypes was monitored.

Averaged across the biotypes, the early planted weeds produced 2660 seeds/plant. Weeds sow mid-season produced 21 per cent less seed and the late-season weeds produced 84 per cent less seed than the early-season plants.

Although seed production was more prolific from the early and mid season plants, the late season plants produced sufficient seed to support reinfestation the following season.

A clean seed bed and competitive crop environment is the best strategy to suppress sterile oat seed production.

Effect of moisture stress on biomass and seed production of wild oats and sterile oats

Seeds of wild oat and sterile oat used in this study were collected from Warialda, NSW, in October 2017 and multiplied at the University of Queensland, Gatton Research Farm in the winter season of 2018. The pot trial to investigate the effect of 20, 40, 60, 80 and 100 per cent water holding capacity (WHC) on these two Avena weed species was conducted in 2019.

Results revealed that wild oat did not survive, and failed to produce seeds, at 20 and 40 per cent WHC. However, sterile oat survived at 40 per cent WHC and produced 54 seeds/plant, suggesting that this species is likely to compete strongly with crops in water stressed situations.

In favourable moisture conditions, both species will produce copious quantities of seed, suggesting that high infestation rates for both species may be a risk in irrigated crops.

Effect of seed burial on emergence, growth and persistence of wild oats and sterile oats

The seed longevity and emergence pattern of wild oat and sterile oat were monitored in field conditions at Gatton, Narrabri and St. George. Fresh weed seed was placed into nylon bags and buried at depths of 0, 2 and 10 cm in November 2017. Bags were exhumed at 6-month intervals over 30-months to evaluate seed germination, viability and decay.

For both species, 50 per cent of seeds at the surface and 10 cm depth had decayed within the first six months. Shallow burial (2 cm depth) of the seed increased persistence, with a significant percentage of seed being viable in the following winter cropping season.

The largest cohort of both species began to emerge at the start of the winter season (May). To ensure the seed bed is clean prior to planting, consider using tillage, herbicide application and cover crops to control this early cohort of Avena weeds. Tillage will bury seeds below their maximum depth of emergence and subsequent tillage should not be performed for 3–4 years to avoid bringing seeds back to the ‘emergence’ depth. Later emerging cohorts (through to October) will be suppressed using strong crop competition or a winter fallow if the infestation is severe.

The results of this research suggest that management strategies that can control all emerged seedlings over two years and restrict seed rain in the field could lead to complete control of weedy Avena spp. in the field.

Effect of wild oats and sterile oats infestation on wheat yield

The interference of wild oat and sterile oat in a wheat crop was examined through field studies in 2019 and 2020 at Gatton, Qld. Infestation levels of 0, 3, 6, 12, 24 and 48 plants m2 of both weed species were evaluated for their impact on wheat yield.

At an infestation level of 15 and 16 plants per m2 for wild oats and sterile oats respectively, wheat yield was halved as a result of reduced spike number per m2.

At the highest weed infestation level (48 plants per m2), wild oat and sterile oat produced a maximum of 4800 and 3970 seeds per m2, respectively. At wheat harvest, wild oat exhibited lower seed retention (17 to 39 per cent) than sterile oat (64 to 80 per cent), with most of the wild oat seeds having fallen from the seed heads before crop maturity.

The results of this study suggest that harvest weed seed control is likely to be a useful tactic in paddocks infested with sterile oat. An integrated weed management strategy that uses both chemical and nonchemical tactics is required to avoid severe crop yield loss, increased weed seed production and weed seedbank replenishment when these weed species are present.

This body of research highlights the benefits of an integrated weed management program that takes the ecology of the target weed into account.

This research was conducted by researchers from the University of Queensland, a WeedSmart scientific partner, with investment from the Grains Research and Development Corporation a WeedSmart sponsor.

Research papers

  1. Mahajan, G., & Chauhan, B. (2021). Biological traits of six sterile oat biotypes in response to planting time. Agronomy Journal,113: 42-51 https://doi.org/10.1002/agj2.20507
  2. Sahil , Mahajan G, Loura D, Raymont K, Chauhan BS (2020). Influence of soil moisture levels on the growth and reproductive behaviour of Avena fatua and Avena ludoviciana. PLoS ONE 15 (7): e0234648. https://doi.org/10.1371/journal.pone.0234648
  3. Mahajan, G., & Chauhan, B. (2021). Seed longevity and seedling emergence behavior of wild oat (Avena fatua) and sterile oat (Avena sterilis ludoviciana) in response to burial depth in eastern Australia. Weed Science, 1-10. https://doi.org/10.1017/wsc.2021.7
  4. Mahajan, G., & Chauhan, B. (2021). Interference of Wild Oats (Avena fatua) and Sterile Oats [Avena sterilis ssp. ludoviciana (Durieu)] in Wheat. Weed Science, 1-20.  https://doi.org/10.1017/wsc.2021.25



Related Articles

View all
Article
News

What to expect at WeedSmart Week 2021

Big 6 at WeedSmart Week 2021 – Double knock to protect glyphosate
The WeedSmart Forum is set for Tuesday 17 August, 2021 at the Civic Centre in Esperance WA. The program features growers, agronomists and researchers discussing ways to use the BIG 6 to beat crop weeds. You can register for the 3-day WeedSmart Week event here.
Greg Warren from Farm and General in Esperance will be sharing his thoughts on the control of weeds like summer-germinating ryegrass, marshmallow, fleabane and portulaca.
He says the growers around Esperance are tackling glyphosate resistance in annual ryegrass, along with brome and barley grass and other emerging weeds using a range of integrated control tactics. The double knock plays a key role in preserving glyphosate (and soil moisture) and providing a clean seed bed for planting crops.

 
Big 6 at WeedSmart Week 2021 – Increase crop competition
WeedSmart Week 2021 is set for Tuesday 17 to Thursday 19 August, 2021 in and around Esperance WA. The last two days feature local growers hosting visits to their farms and discussing how they use the BIG 6 to beat crop weeds. You can register for the 3-day WeedSmart Week event here.
One of the farms hosting a visit during WeedSmart Week is Warrakirri’s 12,800 cropping operation at Condingup. Farm manager Con Murphy has implemented a variety of tactics to combat their main weeds – annual ryegrass and wild radish. Since 2015 the farm has undergone an intensive soil amelioration program to improve the drainage and ameliorate the sandy soils across the farm.
Con says the benefits have been seen in better germination and establishment that sets their cereal, pulse and canola crops up to compete strongly with weeds. There is also a benefit at the end of the season where rain in August or September enters the soil profile without causing waterlogging, and providing a better finish for their crops.
Since 2016-17 about 80% of the farm has been ripped and a portion has been ripped 2 or 3 times because the sandy soils tend to slump after substantial rainfall events, recreating the hardpan.
Con will be showing the WeedSmart tour group how their ripping, drainage, liming and spading program has helped grow more crop and less weeds!
Listen to the podcast with Warrakirri’s Con Murphy talking about the impact of improved drainage on crop competition

Big 6 at WeedSmart Week 2021 – Implement harvest weed seed control
The WeedSmart Week machinery display is set for Wednesday 18 August, 2021 at Dave Campbell’s shed near Esperance WA. The 3-day WeedSmart Week program features growers, agronomists and researchers discussing ways to use the BIG 6 to beat crop weeds. You can register for the 3-day WeedSmart Week event here.
We’ve saved the harvest weed seed control discussion for the machinery session on Wednesday 18 August. Ben White from Kondinin Group will host the machinery session with spray and harvesting gear on display including impact mills from Seed Terminator, Redekop and iHSD (both hydraulic and belt-driven), Emar chaff deck, and spray technologies including Goldacres’ G6 Crop Cruiser series 2, and weed detection technologies using drones and weed identifying cameras (green on green).
Ben White, Kondinin Group (Photo: Melissa Powell, courtesy of GRDC)
Growers doing the WeedSmart Big 6
WeedSmart Week 2021 is set for Tuesday 17 to Thursday 19 August, 2021 in and around Esperance WA. The last two days feature local growers hosting visits to their farms and discussing how they use the BIG 6 to beat crop weeds. You can register for the 3-day WeedSmart Week event here.
One of the growers who will open up their farm for a visit is Adrian Perks who farms at Condingup, 70 km north-east of Esperance. Adrian runs a continuous cropping program on his 4300 ha property, growing canola, wheat, barley, faba beans and lupins. This diverse rotation allows him to mix and rotate both chemical and non-chemical weed control tactics. Over half of Adrian’s farm is sandplain, on which he has implemented a soil amelioration program to address non-wetting to increase the competitiveness of his crops. He currently uses chaff decks for harvest weed seed control and is introducing an impact mill this season. Adrian monitors the tramtracks for weed growth and if he feels the weed pressure is too high, he uses a shielded sprayer to reduce seed set. The bus tour will include four farm visits and a machinery display.
Listen to Adrian on the Regional Update podcast.
Adrian Perkins, Condingup WA
 

Article
News

WeedSmart agronomist set to tackle high rainfall zone weeds

Every locality has its own spectrum of weeds, and growers face different opportunities and challenges regarding the control tactics they can employ.
The WeedSmart Big 6 approach is a practical way to ensure that an integrated weed management program is put in place that disrupts weed seed production and the evolution of herbicide resistance.
Commencing in January 2021, Jana Dixon has joined the WeedSmart team of extension agronomists, with a focus on applying the Big 6 to manage weeds in the high rainfall cropping systems of southern Australia – from Esperance in WA to south-eastern SA, Tasmania and south-western Victoria.
Jana will add to the dedicated and experienced extension agronomists on the WeedSmart team with Peter Newman in the Western region, Chris Davey in the South, Greg and Kirrily Condon in the East and Paul McIntosh in the North.
Jana Dixon has joined the WeedSmart team of extension agronomists, with a focus on applying the Big 6 to manage weeds in the high rainfall cropping systems of southern Australia – from Esperance in WA to south-eastern SA, Tasmania and south-western Victoria.
Jana hails from the Mid North of SA, and began working at Pinion Advisory (previously Rural Directions) while she was studying agriculture at the University of Adelaide. She has been employed full-time at Pinion Advisory since January 2019 as an agribusiness consultant, based in Clare, and spends most of her time delivering agronomy and farm business advice to clients from a wide range of cropping regions in South Australia.
Pinion Advisory is a foundation WeedSmart sponsor and Jana has been involved in two WeedSmart Week events already – the first as a participant and grower group organiser at the Horsham event in 2019 and then as the local organiser for WeedSmart Week 2020 in Clare.
In welcoming her to the WeedSmart team, program manager Lisa Mayer says Jana brings energy, commitment and insight to deliver communications focussed on the southern region’s high rainfall regions.
“Growers in the southern high rainfall zones are facing some serious issues with herbicide resistance influencing their farming decisions,” says Ms Mayer. “Jana will be engaging with agronomists, growers and researchers in each of the distinct high rainfall zones to understand the complexities and look for practical ways to apply the WeedSmart Big 6 in various cropping scenarios.”
“We plan to deliver WeedSmart Week in Esperance, part of Western Australia’s high rainfall cropping zone, in August 2021 and Jana will play a key role in the planning and delivering of our annual 3-day flagship event.”
Jana says her experience with the WeedSmart program has been very positive and she has been particularly impressed with the support the program has from all sectors of the grains industry.
Newly appointed WeedSmart extension agronomist, Jana Dixon (green cap) leading discussions with farm visit host, Ben Marshman, Owen SA, and growers and agronomists attending WeedSmart Week 2020 in Clare.
“I have spoken to many growers and agronomists who have found real value in the information that the WeedSmart program delivers,” she says. “For many it is as much about considering another operator’s philosophy on dealing with weeds, and taking a fresh look at their own systems, rather than just learning about a new tactic or the traits of a new herbicide in isolation from the big picture.”
She says the high calibre of industry people who contribute their time and expertise to the program is testament to the value WeedSmart has to agribusiness, growers, agronomists and researchers alike.
In taking on the responsibility for delivering information tailored for the high rainfall zones Jana says she is pleased to have an extensive network of contacts through Pinion Advisory, with offices in a number of high rainfall areas to provide easy access to local agronomists and growers. She is also aware that there are major differences in weed spectrums and farming systems in each high rainfall zone and plans to take full advantage of the opportunity this role presents to expand her understanding of different approaches to weed management.
“The long and favourable growing season and the associated prolonged periods of weed germination, is a key factor that I see potentially impacting on a grower’s weed management strategies in these regions,” she says. “On the other hand, access to highly diverse rotations and a focus on crop competition are two strategies that can play an important role in achieving excellent weed management in these regions.”
“I am keen to engage with anyone working and farming in the high rainfall zones to build my knowledge and understanding,” she says. “And to create opportunities to develop and extend the WeedSmart Big 6 strategies, both herbicide and non-herbicide, that work in each area and in different situations.”
WeedSmart is the industry voice delivering science-backed weed control solutions with support from the Grains Research and Development Corporation (GRDC), major herbicide, machinery and seed companies, and university and government research partners, all of whom have a stake in sustainable farming systems.
You an follow Jana on Twitter and keep up to date with the HRZ here.

Article
News

Never cut the herbicide application rate

Scientific studies have demonstrated that resistance can rapidly evolve in weeds subjected to low doses of herbicide. Some weeds can develop resistance within a few generations.
Full rates when mixing herbicides too!
When mixing herbicides it is important that each product is still applied at the full label rate to ensure high mortality.
Applying different chemicals in one mix can provide an additive advantage. It is important to understand the mode of action of each herbicide on the plant when preparing a herbicide mix. This is just as important for pre-emergent grass weed mixes as it is for post-emergent mixes aimed at broadleaf weed control. ALWAYS READ THE LABEL.
Surrounding weed seeds with a combination of pre-emergent herbicides with different modes of action can give a high level of control and help extend the useful life of all the chemicals used. The high level of control must be supported with additional control measures for all survivors. All products with different modes of action must be applied at full label rates for this to be an effective strategy.

 
Mixing two chemicals with the same mode of action can achieve some additional efficacy, however, the mix should deliver the combined full rate to ensure a lethal dose. The amount of stubble present and crop safety are all important considerations when mixing chemicals. For example, when using a tank mix of Avadex® and trifluralin to control ryegrass in wheat, the rates used will vary depending on the sowing system and level of stubble retention. Be sure to get good advice.
Many herbicides on the market are a combination of two or more modes of action within the one product. These products must be applied at the full label rate to be effective. Having dual action does not negate the need to change herbicide products and rotate modes of action. Repeated use of any single strategy will reduce the effectiveness of that strategy over time.
 

Subscribe to the WeedSmart Newsletter