Read time: 6 minutes

How can I ensure my complex tank mix is compatible and will spray out?

with Stephen Pettenon, technical services specialist, FMC

The pressure for growers to get across a large area in a short period of time has led to an increased use of complex tank mixes – but the efficiency gains of this practice can easily become unstuck if taking short-cuts results in not being able to spray the brew out.

Stephen Pettenon, FMC technical services specialist.

FMC technical services specialist, Stephen Pettenon, says if there are many products in a tank mix, it becomes increasingly difficult to prevent adverse chemical reactions from occurring in the ‘brew’.

“If operators follow a few guiding principles it is possible to safely mix a complex combination of herbicides, insecticides and even crop nutrients,” he says. “But it is also quite easy to end up with a tank of sludge that can not be sprayed out, if you don’t take the time to get it right.”

With several new products, such as FMC’s Overwatch, Syngenta’s Reflex and Callisto and Bayer’s Sakura Flow, being released as suspension concentrates (SC), it is important to recognise that there is no guarantee that a desired combination can be mixed and sprayed out effectively.

“The first consideration is whether the tank mix is safe and if there are any biological antagonisms likely to arise,” says Stephen. “This is where one product impairs the efficacy of a tank mix partner or increases the risk of crop damage. These antagonisms are relatively rare in pre-emergent situations, but where they occur they can also have implications for the evolution of herbicide resistance.”

“The second, and more common, problem in tank mixes is the potential for the mix partners to be chemically incompatible,” he says. “This can result in the formation of irreversible precipitate reactions or some components settling out of suspension and potentially causing blockages.”

Tank mixing involves many products and so potential crop safety losses must also be a consideration.

The WeedSmart Big 6 tactics for reducing the impact of herbicide resistant weeds on farming systems also promotes the importance of applying herbicides in the most effective and safe manner.

*Always read the label and check with your agronomist for compatibility before mixing and applying agricultural chemicals.

What are the top tips for complex mixes?

In brief: The number one tip is to take your time. Rushing is the most common cause of tank mix failures.

The details: Products that are SC or water dispersable granules (WDG) need time to properly disperse. They also need sufficient solvent – that is water. Start by filling the tank to at least 70 per cent of its capacity with good quality water before adding any products. Each chemical must be added and dispersed fully before the next chemical is introduced to the tank. Keep water rates above 80 L/ha and ensure the agitation system is working well to improve the likelihood of keeping a complex mix in suspension.

Simplify the mix if you can. Keeping two or three products in a compatible mix is generally less challenging than achieving the same for a six or seven-way mix. Be realistic about what can be achieved in a single tank mix.

Courtesy of FMC.

Do I need to be careful when choosing between formulations?

In brief: Yes, not all products are created equal.

The details: Some products are only available as a powder formulation (suspension  concentrate – SC) and it is not possible for them to be produced as a more soluble, emulsifiable concentrate (EC).

For example, Rustler 900 WG is a formulation that requires plenty of time to absorb water and swell the granules and then to disperse into the tank water. Allow at least 5 to 10 minutes, with agitation, before adding the next product. Suspension concentrates also require significant amounts of time.

Some formulations of the same active can behave vastly differently in tank mixes. A well-known example is that potassium (K salt) loaded glyphosates are often less compatible in a tank mix than isopropylamine (IPA) and monoethanolamine (MEA) loaded glyphosate products.

K salt formulations have never been good mixers because the potassium ion has a high ionic charge and small molecular mass, so it has a high affinity to bind with other molecules.

K salt formulations are known to cause flocculation issues if mixed with SC and WDG products and such combinations should be avoided. There are some brands of potassium glyphosate formulations with complex surfactant systems that are mixing-friendly, provided agitation is maintained.

Mixing order is crucial. Start with correctly conditioned water and then add the least soluble formulation first, allowing time for each product to disperse before adding the next component.

If you are unsure of the compatibility of the desired products for the mix, conduct a jar test or ask for technical advice. The major chemical companies are involved in ongoing compatibility testing of the products that may be useful tank mix partners.

Are there things I can do with the sprayer set up to minimise potential problems?

In brief: Avoid over-filtering and be careful when using transfer systems.

The details: It is common for spray rigs to use filtration that is too fine for the nozzle size being used. Using the correct in-line and secondary filter for the selected nozzle can greatly reduce the chance of blockages.

For example, the standard 100 mesh filters on most spray rigs may not be the best choice for handling the mix. If using a single orifice nozzle that is 02 or greater in size, then using a 100 mesh filter (when a 50 mesh is adequate), will greatly reduce the area of passage and potentially increase the chance of blockages.

If transfer systems are used it is important that the small tank contains only one of the spray mix components.

Pre-mixing some or all the products in a transfer system or nursery tank can have some advantages in time efficiency for refilling the sprayer. Problems can arise if the full mixture of chemical is added to a small nurse tank. For example, if the full load of components is added to a 1000 L nurse tank destined for a 5000 L spray rig re-fill, there is unlikely to be sufficient water in the nurse tank to allow for complete dispersion of the product. If transfer systems are used it is important that the small tank contains only one of the spray mix components.

Other resources

Related Articles

View all
Article
Ask an Expert

How do you manage summer weeds without spraying at night?

Concerns are being raised about the practical implications of this for summer weed control programs.
Mary O’Brien, a private consultant with extensive experience in managing spray drift, is keen to see growers fully adopt spray application practices that maximise herbicide efficacy and minimise off-target drift.
 
Mary O’Brien says the ‘community drift’ that can occur when a number of applicators are each putting a small amount of product in the air at the same time can have very damaging effects on off-target sites.
“The bottom line is that allowing spray to drift is like burning money,” she says. “Any product that doesn’t hit the target is wasted and the efficacy of the spray job is reduced, mildly resistant biotypes may survive as a result of low dose application and there is potential damage to sensitive crops and the environment.”
“The difficulty is that many growers want to spray at night to cover more ground when conditions are cooler and potentially weeds are less stressed. Having a restriction on night spraying does restrict the time available to cover the areas required.”
Having heard these concerns from growers across the country Mary keeps coming back to the fact that if there was a limitation to capacity at planting or at harvest, growers would scale up to get the job done in a timely manner.
“Buying another spray rig or employing a contractor is an additional cost, especially after a couple of tough seasons, but I really think this is insignificant against the cost of losing key products and the resultant escalation in herbicide resistance to the remaining herbicides,” says Mary. “This problem is not confined to 2,4-D or even to herbicides. I recently spoke to a stone fruit grower who was forced to dump his whole crop after a positive MRL return for a fungicide he had never even heard of, let alone used.”
What about just slowing down and lowering the boom during night spraying?
Short answer: This, coupled with a good nozzle, will reduce drift but it will never eliminate it.
Longer answer: The correct ground speed and boom height will have a large effect on the amount of product that remains in the air. The problem is that it only takes 1 per cent of the product remaining in the air to cause off-target damage.
Once there are a few operators putting just 1 per cent of their product in the air at the same time, the amount of product quickly accumulates and can potentially be very damaging. Mary calls this ‘community drift’.
Isn’t it better to spray weeds at night when it’s cooler?
Short answer: Not really.
Longer answer: Research by Bill Gordon showed that even if you keep everything else the same, night spraying can put at least three times more product in the air than daytime application, even if weather conditions are similar and there is no temperature inversion in place. The main difference between day and night is how the wind is moving across the landscape, rather than the wind speed.
Under inversion conditions, the air moves parallel to the ground surface and this means that the product can move significant distances away from the target before coming to the ground.
To achieve the best results through daytime spraying, applicators should focus on treating small, actively growing weeds. When there is good soil moisture, weeds are unlikely to be stressed even when the temperature is quite high.
Temperature inversion conditions are more common at night and in the early morning. These conditions generate a laminar flow of air across the landscape allowing small droplets to travel many kilometres away from the target site before coming to ground.
Can I use other products at night and just avoid using 2,4-D?
Short answer: The current changes to 2,4-D labels has drawn a lot of attention but the problem is the same for all crop protection sprays – herbicides, fungicides and insecticides.
Longer answer: Different products have different properties and some may work better at night but the problem is the sensitivity of some crops to certain products, such as 2,4-D. All products are tested for their efficacy and the label provides detailed information about the required spray quality and spray application conditions. Many products have explicit label instructions regarding wind speed, temperature inversions (or laminar flow) and night spraying.
Given the high risk of drift at night, applicators need to be very confident that there is no inversion present, and weather conditions should be measured at least every 15 minutes to ensure wind speed remains above 11 kilometres per hour. An on-board weather station is the best way to monitor conditions.
A visual demonstration using smoke to simulate the the lateral movement of small spray droplets when a temperature inversion is in place.
What can I do to improve spray efficacy and avoid spray drift?
Short answer: If you do just one thing – change your nozzle.
Longer answer: All the factors that increase drift also reduce efficacy. To improve efficacy and reduce drift, use a better nozzle (larger spray quality) and appropriate water rates (matched to spray quality and stubble load), slow down and keep the boom low. Wind is required to push product downward and onto the target, and remember that the 3–15 km/h wind speed is for day time conditions only, this does not apply at night.

Article
Ask an Expert

Does ambient temperature affect herbicide performance?

with Chris Preston, Associate Professor, Weed Management
 at 
The University of Adelaide
Temperature affects the absorption, translocation and metabolic degradation of herbicides applied to plants. Herbicides applied under the wrong conditions can appear to fail, however the reason may not be herbicide resistance.
Dr Chris Preston, Associate Professor, Weed Management
 at The University of Adelaide says most herbicides have a temperature range at which they are most effective in controlling target weeds.
“Applying herbicides outside the optimal temperature range is likely to contribute to a spray failure, even in susceptible populations,” he says. “Alternatively, applying herbicides within the correct temperature range can improve the control in populations known to have a level of resistance to that herbicide.”
Dr Chris Preston suggests testing whole plants rather than seed for responses to a range of post-emergent herbicides. The Quick-Test is conducted in the same growing season as herbicide will be applied so the testing will occur under similar conditions to field conditions.
Dr Preston says the effect of frost on the efficacy of clethodim is a striking example. Spraying clethodim in non-frosty conditions achieves vastly better results than spraying after three days of frost, even on populations that are resistant to this chemical mode of action.
“Combining the optimal temperature with optimal weed size will give the best results possible,” he says. “The current common practice of applying clethodim to tillered ryegrass in the coldest months is not making the best use of this herbicide.”
As a general rule of thumb, Group A (fops), paraquat (Group L) and glyphosate (Group M) are more effective at lower temperatures while Group A (dims), atrazine (Group C) and glufosinate (Group N) are more effective at higher temperatures. However, weeds that are resistant to paraquat become less resistant in warmer temperatures.
“The other implication of this research is the effect of ambient temperature on herbicide test results,” says Dr Preston. “Seed collected in winter and grown out in the glasshouse in summer will be tested for resistance in conditions that are not representative of field conditions when growers are next treating that weed species. The Quick-Test using whole plants overcomes this problem and improves the reliability of herbicide susceptibility testing.”
How can I get the best performance out of clethodim?
Short answer: Avoid applying clethodim during frosty periods.
Longer answer: Twice as much clethodim is required to kill susceptible annual ryegrass if the product is applied after three days of frost. Even higher rates are required if the plants have resistance to clethodim.
Planning to apply clethodim for grass control outside the coldest months of June and July, and avoiding night spraying in winter, will see better results in both resistant and susceptible populations, particularly in tillered plants. Clethodim is most active when temperatures are over 20 degrees C.
Weed seed that is tested during summer may return false negative results, which could translate into spray failure in the field the next season.
Twice as much clethodim is required to kill susceptible annual ryegrass if the product is applied after three days of frost. Even higher rates are required if the plants have resistance to clethodim.
When it is it too hot for glyphosate?
Short answer: Efficacy is much better at 20 degrees C than at 30 degrees C.
Longer answer: Spraying glyphosate resistant barnyard grass at lower temperatures is more effective than under hotter conditions. If barnyard grass is tested for herbicide resistance during the cooler parts of the year it may appear susceptible to the field rate of glyphosate but then when this rate is applied to the population in summer there may be many survivors.
When glyphosate is taken up rapidly it tends to limit its own translocation, which can mean that although symptoms may appear more rapidly in warmer temperatures, plant kill is less reliable.
Which herbicide resistance test should I use?
Short answer: The weed resistance Quick-Test for post-emergent herbicides.
Longer answer: The Quick-Test involves testing whole plants rather than seed for responses to a range of herbicides and rates. The Quick-Test is conducted in the same growing season as herbicide will be applied so the testing will occur under similar conditions to field conditions. The results of the Quick-Test are available within the same season, potentially giving growers an opportunity to apply an effective weed control tactic before the end of the season. The Quick-Test is not available for many pre-emergent herbicides.
The Quick-Test is available through Plant Science Consulting and results are normally available after four weeks.
Relevant links

Maximising clethodim performance and the impact of frost fact sheet
Keeping clethodim working in broafleaf crops
Plant Science Consulting herbicide resistance testing – Quick-Test
GRDC Update Paper – New developments and understanding in resistance mechanisms and management

Subscribe to the WeedSmart Newsletter