Read time: 5 minutes

How can I set up my summer crops to help manage weeds?

with Belinda Chase, Agronomist, Dalby Rural Supplies

Belinda Chase, agronomist at Dalby Rural

It has been a few years since growers on the Darling Downs have been able to plan for a summer crop. With the uncertainty surrounding planting opportunities came some hesitancy to fully invest in weed control.

Belinda Chase, an agronomist at Dalby Rural Supplies, says it is a welcome change to be actively planning for summer cropping and being more proactive with weed control leading up to planting.

“Our main weeds here over summer are feathertop Rhodes grass, barnyard grass and broadleaf species like flaxleaf fleabane and peach vine,” she says. “In terms of known resistance we have some Group 1 [A] and glyphosate resistance in barnyard grass and paraquat plus glyphosate resistance in tall fleabane. Annual ryegrass seed in hay from other states has also established in small areas, potentially bringing resistance that has evolved elsewhere.”

With more soil moisture than growers have had for several years, many have been planning ahead to manage weeds in winter fallows destined from summer crops – mainly cotton and sorghum, along with some millet, corn, mungbean and sunflower.    

“Pre-emergent, or residual, herbicides have played an important role in keeping weed numbers low in winter fallows,” says Belinda. “The next rain event will most likely also be the trigger for planting, and weed control in those early weeks of crop growth will be crucial.”

The WeedSmart Big 6 tactics can be applied to all crops to reduce the risk of herbicide resistance through diverse herbicide use and cultural control to prevent weed seed set.

What are the resistance risks with pre-emergent herbicides in summer crops?

In brief: Avoid over-using the same mode of action group throughout the crop rotation.

The details: There has been widespread use of knockdown herbicides with residual activity, such as Group 14 [G] flumioxazin (e.g. Valor), in winter fallows to maintain low weed numbers. With multiple use patterns in fallow (on its own or as a tank mix ‘spike’) and post-sowing pre-emergent in a number of summer crops, there is a risk that resistance to this mode of action could develop. There is currently no known resistance to Group 14 [G] herbicides in Australia but resistance has been identified in both grass and broadleaf species in other countries.

Valor has a plant back period of one month pre-sowing for pigeon pea, maize, sorghum and navy bean, two months pre-sowing for cotton, sunflower and mungbean and up to nine months pre-sowing for canola. It can be applied after sowing and pre-emergent to protect the crop as it establishes.

Tank mixes and co-formulations are an effective way to reduce the risk of resistance to Group 14 [G] herbicides. Significant escapes must be prevented from setting seed.

Another option for pre-emergent weed control in sorghum is s-metolachlor, a Group 15 [K] herbicide such as Dual Gold. Applied as a split application before and immediately after planting sorghum gives optimal weed control, provided the seed safener (Concep II or Epivio C) has been applied at planting.

Atrazine, a Group 5 [C] herbicide, also provides a pre- and post-emergence option for broadleaf weeds and some pre-emergent control of annual grasses like barnyard, crowsfoot, summer and love grass in crops such as sorghum and maize.

How can I best incorporate imi-tolerant summer crops?

In brief: Imi-tolerant (IT) hybrids are now available for sorghum, maize, sunflower and soybean, providing for alternative in-crop control options for a range of grass and broadleaf weeds.

The details: IT sorghum seed is in short supply this year, but there are other options to consider. Growers who have Group 1 [A] resistance in barnyard grass or who are looking for alternative products to control or suppress other key summer weeds may consider growing these herbicide-tolerant crops.

With an imi-tolerant hybrid, growers will be able to safely plant into paddocks where imidazolinone (Group 2 [B]) chemistry has been recently applied, say after an IT maize, wheat, canola or pulse crop, negating the current 12+ month plant-back requirement, which otherwise restricts the choices that growers have in summer. In this situation it is advisable to avoid applying Group 2 [B] herbicides to the current crop to break the ‘imi-cycle’ that can develop where imi herbicides are used in successive crops – resulting in a high risk scenario for the evolution of herbicide resistance.

The second major benefit is that an imi-tolerant hybrid can be planted into a paddock that has a broadleaf weed burden—a situation that would not be advisable for a non-IT variety.

Imi-tolerant (IT) hybrids are now available for sorghum, maize, sunflower and soybean.

Is patch management a good tactic for feathertop Rhodes grass?

In brief: Feathertop Rhodes grass is a serious challenge, but summer cropping can help reduce the weed seed bank.

The details: Controlling FTR can be easier in a competitive mungbean crop on narrow row spacing, than in sorghum and sunflower, which are typically grown on wider row spacings and do not quickly cover the inter-row.

Controlling feathertop Rhodes grass can be easier in a competitive crop on narrow row spacing, where the crop quickly covers the inter-row.

After applying suitable pre-emergent herbicides (if FTR numbers are low) or cultivating if FTR pressure is high, do everything you can to maximise crop competition. Consider narrower row spacing, optimal plant density, avoid planting gaps and provide adequate crop nutrition.

After the crop has established, use inter-row cultivation where necessary and harvest early. If there are areas with low density escapes of this prolific seeding weed, chipping is worthwhile before the seed sets. If patches of escapes are evident it can be very beneficial to accept a ‘short-term pain for long-term gain’ by ploughing or spraying out the affected patch of crop before the FTR plants set seed.

At harvest, record any patches of FTR and return soon after harvest to remove established plants and apply a pre-emergent herbicide to manage new germinations.

Further information

Related Articles

View all
Article
News

Testing informs herbicide choice

Buying a new property brings with it a number of unknowns and it can take some time for the new owners to become familiar with the soils, the terrain and the weeds.
When the Birch family of ‘Catalina Farms’, Coorow, WA purchased a neighbouring property, historic ‘Koobabbie’, they had reason to expect that herbicide resistance would be less of a problem because there had been limited use of herbicides on ‘Koobabbie’ in its 114 history of farming.
Daniel Birch, who farms with his wife Jen, parents Rod and Shelley, and long-term team member, Justin Passamani, says the purchase conveniently coincided with the opportunity to be involved with independent herbicide resistance testing in 2020.
“The testing was arranged through the Liebe Group and conducted at the Australian Herbicide Resistance Initiative,” he says. “We were keen to test some theories we had about resistance status of weeds on Catalina and also to get some baseline information about Koobabbie to help us plan our herbicide program.”
Daniel Birch of ‘Catalina Farms’, Coorow, WA says the big take home message from recent herbicide resistance testing was the power of mode of action mixtures.
The testing revealed a number of things that surprised the Birches. To start with, they found there was Group 2 [B] resistant ryegrass in paddocks on Koobabbie that had no history of Group 2 herbicide use.
“This demonstrated just how easy it is for herbicide resistance to move in seed or hay, or on machinery,” says Daniel. “Obviously we can use this information to avoid using chemistry that we know has little to no efficacy on ryegrass.”
“The other major finding was that Group 12 [F] resistance in wild radish was much higher than we expected across the farm,” he says.
This has led the Birches to include more premium products in their program to target resistant ryegrass and wild radish, and drive down the weed seed bank as quickly as possible. On the flip side, they also discovered that they can save money by using trifluralin at lower rates in seasons with good growing conditions, where there is less need for a long residual effect.
“In those years where the crop gets off to a good start, the crop competition effect kicks in early to suppress weeds,” says Daniel.
By taking on board the resistance testing results from weed seed samples collected across the state, Daniel was reassured by the fact that the resistance issues they faced were essentially the same as other growers.
“The big take home message for us was the power of mode of action mixtures,” he says. “From the overall survey results across Australia, the resistance frequency to stand-alone pre-emergence herbicides ranged from 10 to 34 per cent, yet resistance to herbicide mixtures ranged from 0 to 6 per cent.”
Armed with knowledge about the resistance profile of their weeds, the Birches are combining some older chemistry with newer, premium herbicides for maximum effect.
The AHRI resistance testing program is led by Dr Roberto Busi. In 2019, annual ryegrass seed samples from 298 farms were submitted, representing 579 populations from four states in Australia, and these were tested for resistance to 21 herbicides applied at the recommended rate – 12 standalone and nine two-way mixtures.
In total, 15 876 individual resistance tests were conducted to screen two million seeds against registered herbicides and herbicide mixtures at the recommended label rate.
Dr Busi says the mixtures that growers can confidently incorporate in their annual ryegrass program are trifluralin + Sakura mix, Luximax + triallate, and clethodim + butroxydim.
“When applied at full rate for each component, these mixtures can achieve a better outcome than the same herbicides applied as stand-alone treatments against annual ryegrass with known resistance,” he says.
For wild radish, 200 samples were tested over a period of two years and resistance to Groups 2 [B], 4 [I] and 12 [F] were all over 50 per cent resistant. At 70 per cent resistant, Group 2 [B] herbicides should probably be dropped from most wild radish herbicide programs and Group 4 [I] is under threat.
“In 2021, we found that mixing Group 12 [F] with Group 6 [C] herbicide bromoxynil vastly improved control of wild radish,” he says. “From 51 per cent resistant to Group 12 [F] down to less than 15 per cent of samples resistant to the 12 [F] plus 6 [C] mixture.”
“It is important to emphasise that herbicide resistance testing is conducted on small, actively growing weed seedlings in a glasshouse environment,” says Roberto. “In the field, spray failures can easily occur, even in susceptible weed populations, if the herbicide is applied under the wrong conditions or to plants that are too large or stressed. This is particularly true for wild radish.”
AHRI Podcast: Interview with Daniel Birch about herbicide testing
AHRI Insight: Mixtures rock
Herbicide testing options

Article
News

Safe sorghum planting while controlling weeds

Pre-emergent herbicide, metolacholor and S-metolachlor, have been used in Australia primarily to control grass weeds for over 40 years. To date, no instances of resistance to this active ingredient have been documented in Australia and even internationally the few cases of resistance are in broadleaf weeds only. Resistance in northern summer grasses is probably low at present.
Syngenta’s field biology manager, Rob Battaglia, says some recent changes to the label use patterns and the launch of a new seed safener product will further expand the usefulness of S-metolachlor products, such as Dual Gold® and Primextra Gold®, in summer crops while protecting sorghum seedlings from herbicide damage.
Syngenta’s field biology manager, Rob Battaglia, says the new use patterns for Dual Gold® in sorghum, cotton and fallow centre on extending application flexibility and residual activity of the herbicide on target weeds.
“S-metolachlor is registered for use in a wide range of crops, including sorghum, maize, sweetcorn, soybean, sunflower and cotton, as well as in fallow situations,” he says. “The new use patterns in sorghum, cotton and fallow centre on extending application flexibility and residual activity of the herbicide on target weeds.”
In sorghum, a rate of 1.0 to 2.0 L/ha can be applied either as a single application before the crop or weeds emerge, or as a split application pre and post crop emergence (up to 6-leaf stage). Similarly, the full rate can be applied after harvest to establish the fallow or 1.0 to 1.5 L/ha can be applied pre-emergent to weeds at fallow establishment followed by 0.5 to 1.0 L/ha within 4 weeks. Be sure to observe replant intervals when planning the next crop.
In cotton, a single application of 1 L/ha either pre-emergent (before, at, or immediately after, planting), over-the-top or directed stand-alone spray or over-the-top mixed with Roundup Ready herbicide on Roundup Ready FLEX® cotton.
“There are several factors that affect the length of effective residual activity of S-metolachlor, some of which are outside the grower’s control,” says Rob. “The product needs to be incorporated and has interactions with rainfall, temperature, soil type, soil organic matter and stubble. Having more flexibility in the application timing gives growers the ability to compensate for some of these factors and control new waves of weed germinations for longer.”
Untreated strips are a good indicator of the seed bank and potential weed burden in a field. The pre-emergent herbicide treated area on the left has far fewer weeds than the untreated section of the field on the right, which suffered significant yield loss due to feathertop Rhodes grass infestation.
S-metolachlor is only active on weeds that have not yet emerged and has no effect on weeds that have already emerged from the soil or that do not come in contact with the herbicide as they emerge from the soil. It is essential to control already-emerged weeds first and then apply the pre-emergent to control subsequent flushes of weed germinations.
“There are some situations where the residual herbicides will appear to be less effective than they should, but this can often be attributed to compromised application timing, limited rainfall and soil conditions, rather than herbicide performance,” says Rob. “The difficultly in achieving perfect application timing and incorporation with rainfall is one of the main reasons why the new use patterns for Dual Gold® have been registered. Pre-emergent herbicides are best used within the WeedSmart Big 6 integrated weed management program and not as a stand-alone control measure.”
While other crops listed on the S-metolachlor label can metabolise the herbicide, sorghum requires a seed safener to protect the germinating plants from the herbicidal effects of S-metolachlor. The new Epivio C® seed safener replaces Concept II® and provides better overall protection for sorghum seed.
S-metolachlor damage is seen as distorted and twisted growth in sorghum, the rightmost plant is unaffected (protected by seed safener).
In Syngenta’s product development trials in Queensland and NSW, they measured an 11 per cent increase in plant stand and a 7 per cent increase in sorghum yield in crops where the seed was treated with Epivio C®compared to Concept II®. Epivio C® has also demonstrated improvements in seed safety and shelf-life for carry-over seed.
“Epivio C® is applied as seed treatment and when the seed is planted into moist soil the product is taken up into the plant and improves the metabolism of the herbicide in the seedling, resulting in no crop symptoms,” says Rob. “The result is better crop establishment and healthier plants that can better compete against weeds that germinate later in the season.”
Epivio C plot trial demonstrating the benefit of the seed safener in supporting robust germination and establishment. No safener (left) compared to Epivio C safener (right).
There is evidence that growers can maintain crop yield and reduce summer grass seed production by planting sorghum crops at a density of 10 plants/m2 and a row spacing of 50 cm.
The WeedSmart Big 6 includes diversity in crops and pastures, crop competition and mixing and rotating herbicide mode of action groups.
More information

Podcast: Seed safener explainer (starts around the 22 min mark) 
Article: Weaponise sorghum crops to take out feathertop Rhodes grass and awnless barnyard grass

Article
Ask an Expert

Can pulse cover crops tackle multi-resistant ryegrass in irrigated systems?

The best weed control comes from tactics that also bring other benefits to a farming system.
Greg Sefton, principal agronomist with Sefton Agronomics in the Riverina, says multi-resistant annual ryegrass is becoming a major problem in irrigated systems.
Greg Sefton, principal agronomist with Sefton Agronomics in the Riverina, says legume cover cropping is providing effective control of multi-resistant annual ryegrass in irrigated systems.
“Herbicide resistance can move easily through irrigation areas, particularly when the control methods used on the supply channels are limited to just a few herbicides,” he says. “The ryegrass here is generally accepted to have resistance to glyphosate (Group 9 [M]), Group 1 [A] such as clethodim, Group 2 [B] and Group 3 [D], such as trifluralin. Growers are now relying heavily on Group 15 [K] products such as Sakura, and doing their best to rotate out of the problem.”
To regain control, Greg is working with growers to incorporate a multi-purpose fallow crop such as field pea into the system as a winter fallow clean with the added benefit of contributing biological nitrogen into the soil ahead of planting rice or wheat. 
Earlier maturing varieties of field pea provide better weed control options than Kaspa field pea, chickpea and lupin, all of which generally mature later, sometimes after the target weeds have set seed.
“A competitive pulse crop terminated at maximum biomass is an excellent way to reduce weed seed set,” says Greg. “It is a cultural control that also enables the use of some herbicides that are rarely used in our system. Combining the herbicide and cultural methods in the WeedSmart Big 6 is an effective way to keep our cropping options open and to maximise the value of applied water.”

What is the best fit for the legume crop as a winter clean?
In brief: In the Riverina, the optimal place in the rotation is ahead of rice.
The details: Fields selected for rice production are usually bare fallowed for the preceding winter. The aim of the fallow is to control weeds and conserve soil moisture.
Some growers are having success with field pea sown in May as a winter cover crop then terminated for silage or as a brown manure in early September. This fits well with preventing seed set in annual ryegrass, including late germinating plants.
Field pea is a competitive legume and can suppress weed germination and growth when planted in the most competitive configuration possible with minimal soil disturbance and no gaps.
A knockdown treatment of glyphosate (Group 9 [M]), clopyralid (Group 4 [I]) and carfentrazone (Group G [14]) is applied at planting then a mix of pendimethalin (Group 3 [D]), clomazone (Group 13 [Q]) and paraquat (Group 22 [L]) is applied after an irrigation flush to initiate rice germination and prior to rice germination to knockdown both newly emerged barnyard grass (BYG) and persisting ryegrass. This provides a double knock on ryegrass whilst applying a pre-emergent herbicide for barnyard grass in the rice phase.
When implemented once every 4 or 5 years, with a diverse rotation of winter and summer crops in-between, growers can keep a lid on herbicide resistant annual ryegrass populations. 
Field pea is a competitive legume crop that can reduce annual ryegrass germination in the paddock and halt encroachment from the crop borders.
How do you manage weeds on the non-crop areas?
In brief: The same herbicide mix is applied to the whole paddock, including the weeds growing in the check banks.
The details: Weed seed, often carrying herbicide resistance genes, travels easily through irrigation systems and can colonise non-crop areas. Seed from these plants readily infests the cropping areas if not controlled effectively. The control measures used on non-crop zones are often limited to herbicide tactics, so it is important to make sure the herbicide is applied to maximum effect to prevent seed set.
Farm hygiene and physical removal of isolated weeds will also have a positive impact on weed seed production. 
What farming system benefits come with growing a legume cover crop?
In brief: A legume crop grown for biomass rather than grain can improved soil tilth and reduce crusting on some sodic soils. This practice also allows better soil nutrition management and keeps the grower’s options open if the water allocation situation changes.
The details: The field pea crop will fix atmospheric nitrogen and this allows the grower to use 100 to 150 kg/ha less urea to grow the following rice crop without any yield penalty. If there is insufficient irrigation water available for a rice crop, then the fixed nitrogen is still available for a winter crop of canola or wheat.
The phosphorus fertiliser required for rice can be applied when the field pea crop is planted, giving the phosphorus time to become more available in the soil and ready for uptake when the rice is planted.
Field pea is quite drought tolerant, so if irrigation water is not available for rice, the field pea can be grown through to harvest the grain and will usually yield 0.7 t/ha, which can be more profitable than, say, a 1 t/ha drought-affected wheat crop.
Building an integrated farming system based on methods that have multiple benefits is fundamental to staying ahead of weed pressure.
Practical tips for growing field peas as a brown manure crop
Pulses to attack weeds on many fronts

Subscribe to the WeedSmart Newsletter