Read time: 6 minutes

Interest in cover crops continues to grow

There is a growing interest in planting cover crops in cotton and broadacre systems, providing the potential to preserve soil moisture, improve soil health and manage weeds.

As part of the CRDC project ‘Staying ahead of weed evolution in changing cotton systems’, the Queensland DAF Weed Science team investigated the impact of cover crops on weed suppression.

Jamie Grant (far right) is pictured with Jeff Werth (DAF weeds researcher). Jamie grows French white millet as a cover crop in rotation with cotton in his dryland cropping system at Jimbour, on the Darling Downs.

Research has shown that cover crops can provide a benefit in terms of weed control. However, in order for them to be effective, it is important to start with a clean crop and ensure that the cover provided is adequate and evenly spread.

Similar to findings from grower Jamie Grant in the following case study, research showed that when the cover was not adequate, lower amounts of cover provided a haven for weeds to germinate. A clean crop also provides the cover crop with a head start and improves its ability to out-compete the weeds.

The project also examined the effectiveness of the 2+2 and 0 strategy (two non-glyphosate tactics in crop, plus two non-glyphosate tactics in fallow and zero survivors or incursions). This strategy was found to be effective, and the use of tools such as WEED-IT can provide an effective way to incorporate other herbicides, and particularly follow-up for effective survivor control.

Darling Downs grower Jamie Grant has more than a decade of experience growing cover crops and was a pioneer in including millet in his rotation as a dedicated cover crop. Jamie has modified his machinery and farming style, after much on-farm trial and experimentation.

Jamie Grant: experience and experimentation lights the way

Jamie is a dryland cotton grower near Jimbour, Darling Downs in South East Queensland. His current crop rotation is cotton every second year and a millet cover crop every other year. He has included French white millet as a cover crop in his rotation for nearly a decade and as a result, he has been able to change from cotton every third year to every second.

Jamie said his main reason for including the cover crop is to preserve soil moisture.

“The cover crop increases infiltration from rainfall, prevents the majority of run-off in larger events, and also prevents evaporation of moisture from the soil,” he said. “Weed management was not a major focus for the inclusion of the cover crop, however the cover from the millet does give an additional benefit in terms of weed control.”

Jamie also highlights the importance of a dedicated cover crop, as compared to a cash crop that is harvested for grain.

“The main purpose of the cover crop is to preserve moisture and cover,” he said. “When a crop is allowed to reach harvest maturity, it has taken extra moisture from the soil profile contrary to the objectives of a cover crop.”

Crop choice

Jamie has settled on French white millet as his cover crop, planted in 15-inch (38cm) rows. As the focus is to preserve soil moisture, millet is a short duration crop and can be grown to near maturity in six weeks from planting in October to December. In this time, the millet provides maximum cellulose to give the maximum length of cover from the stubble.
“While growing, the millet only uses approximately one foot or 30 cm of stored soil moisture,” Jamie said. “The gains in soil moisture has improved fallow efficiency from 30 per cent in fallow to 70 per cent with the cover crop.”

Before the inclusion of the cover crop, the soil profile required approximately 600mm of rainfall to refill. Now the profile is refilled after 300mm. The millet also creates enough cellulose that the cover remains adequate until cotton is planted the following season.

Jamie’s own research has shown that legumes tend to break down too quickly to provide the length of cover required, and French white millet has the right characteristics.

Jamie Grant grows cotton every second year rather than every third, using the moisture stored under the cover crop.

“I find that if I plant in October, I generally have 40 per cent cover the following November, when I’m ready to plant cotton,” Jamie said. “I don’t use sorghum as a cover crop, as the wider row spacing does not provide the cover needed, and the gaps in the stubble create a suitable microenvironment for weed germination and growth.”

“I also noticed that in lighter rainfall events in sorghum and wheat stubble, the rainfall runs down the stalks of the standing stubble and creates a wet patch at the base. This is where the weeds grow and creates weedy patches across the field. A good millet cover crop is more even and allows the rain to penetrate the stubble evenly, and the stubble cover reduces weed emergence and the need to spray.”

Cover crops must reach maturity to create the maximum amount of cellulose for longevity. Other crops such as sorghum, wheat and barley take too long to reach maturity and as a result use too much moisture.

The main weeds on Jamie’s farm include sowthistle, feathertop Rhodes grass and fleabane. Jamie places a high importance on weed control, however says “if you can grow good weeds, you can grow good crops”.

Jamie’s focus on weed management in the cover crop is to ensure adequate cover across the whole field, as gaps in cover create a haven for weeds.

“I do this by ensuring good germination, with quality seed, and I put as much effort into growing a good cover crop as I do growing cotton,” he said. “Double knocks are still an important part of the herbicide program and controlling weeds prior to crop emergence (both for millet and cotton) ensure the crop can get a head start to out compete the weeds. An in-crop spray of MCPA and Starane is always done in the millet to control volunteer cotton, however if a heavy cover crop is grown a spray to control volunteer cotton is not always needed.”

Jamie also uses a controlled traffic system (CTS), as he considers minimising soil compaction to be very important, has been using WeedSeeker technology on a large boom for a number of years, and is now using a SwarmFarm robot mounted with a WEED-IT sprayer across his fields.

The big boom is generally used for broadacre spraying, with the relevant herbicide mixture for the weeds present. The WeedSeeker, and now the SwarmFarm robot with the WEED-IT, will be mainly used to control weeds in fallows between rain events, and broadacre sprays on mass germinations. The spray rig is also rotated across the tramlines in the CTS, so that it does not constantly run up and down the same wheel tracks. This allows subsequent sprays to control weeds that were run over by the rig in the previous spray.

Jamie’s key learnings and advice to growers considering growing cover crops is to ‘work it backwards’.

“Grow the cover crop that can accumulate the most moisture, and then grow the cash crop that will take the best advantage of the moisture,” he said. “It is important to work out your moisture availability and your crop frequency. The moisture holding capacity of the soil will be better with a cover crop independent of soil type. The lower the capacity of the soil to hold moisture, the greater the effect evaporation has. This increases the importance of having a cover crop.”

Growing good cover

Jamie has spent a couple of years determining how to germinate and grow a good cover crop. He also stressed the importance of purchasing quality seed.

“Patience is the key,” he said. “It is important to do a good job with proper seedbed preparation at planting. An example of this when planting millet, is that it does not like to break through a crust while emerging.”

If Jamie gets enough rainfall for planting millet, he checks the forecast to ensure a further heavy rainfall event is not lik

Jamie finds that putting the effort into the millet crop means he reaps the benefit in the following cotton crop.

“A new tactic I’m considering is intercropping – planting millet between the cotton on a 60-inch row spacing (152 cm), and then spraying the millet out after three to four weeks,” he said. “This will increase ground cover in the cotton crop, with the benefits of increased weed competition, better rainfall infiltration and reduced moisture evaporation in-crop, for the sacrifice of some surface moisture that will evaporate in summer anyway.”

Jamie said it is also of key importance to let neighbours know what cover crops you have, to minimise the risk of spray drift, which will reduce their effectiveness by either killing areas or impeding growth and creating areas of less than adequate cover.

“Mapping fields with SataCrop is an important tool to do this,” he said.

Effect on soil moisture quantified

Cover crops serve multiple purposes in a cotton rotation, with research underway to quantify the effect on water infiltration and moisture holding capacity of soils.

Research is also underway in the Riverina as part of the ‘Staying ahead of weed evolution in changing cotton systems’ project. Researchers at NSW DPI in collaboration with CRDC, GRDC and Queensland DAF have run a series of experiments at the IREC trial site near Whitton in Southern NSW to better understand the effectiveness of incorporating cover crops into cotton systems. The aim of this research is to evaluate the benefits that cover crops could provide when incorporated into cotton systems, especially improved water infiltration and water holding capacity of soil.

An experiment looking at cover crop species and rotation types has been completed and is being analysed by a biometrician to gain insight into the soil water dynamics as influenced by the cover crops. Initial results suggest the type of cover used is less important than the amount of cover or biomass that is grown when it comes to influencing on yield.

This season a spray out timing experiment is being conducted to determine how much biomass is required by cover cropping to have an influence on infiltration and water holding capacity. During the winter fallow a cover crop mix was sown and subsequently sprayed out at different growth stages.

NSW DPI cotton research agronomist at Yanco, Hayden Petty says the intent was to achieve varying amounts of biomass into which cotton was planted. This will be compared to a fallow that is the control for the experiment.

“Cover crops offer many benefits to a cotton farming system, as research is showing with weed suppression and soil health,” Hayden said. “After harvest this year we will have fully analysed the data and will be in a position to offer a quantifiable effect on soil moisture.”

For more information, contact Hayden Petty

This article appears courtesy of the Cotton Research and Development Corporation (CRDC). It was published in the Autumn 2020 edition of CRDC’s Spotlight magazine: www.crdc.com.au/spotlight. Images courtesy Tom Quigley and Hayden Petty.

Related Articles

View all
Article
News

Testing informs herbicide choice

Buying a new property brings with it a number of unknowns and it can take some time for the new owners to become familiar with the soils, the terrain and the weeds.
When the Birch family of ‘Catalina Farms’, Coorow, WA purchased a neighbouring property, historic ‘Koobabbie’, they had reason to expect that herbicide resistance would be less of a problem because there had been limited use of herbicides on ‘Koobabbie’ in its 114 history of farming.
Daniel Birch, who farms with his wife Jen, parents Rod and Shelley, and long-term team member, Justin Passamani, says the purchase conveniently coincided with the opportunity to be involved with independent herbicide resistance testing in 2020.
“The testing was arranged through the Liebe Group and conducted at the Australian Herbicide Resistance Initiative,” he says. “We were keen to test some theories we had about resistance status of weeds on Catalina and also to get some baseline information about Koobabbie to help us plan our herbicide program.”
Daniel Birch of ‘Catalina Farms’, Coorow, WA says the big take home message from recent herbicide resistance testing was the power of mode of action mixtures.
The testing revealed a number of things that surprised the Birches. To start with, they found there was Group 2 [B] resistant ryegrass in paddocks on Koobabbie that had no history of Group 2 herbicide use.
“This demonstrated just how easy it is for herbicide resistance to move in seed or hay, or on machinery,” says Daniel. “Obviously we can use this information to avoid using chemistry that we know has little to no efficacy on ryegrass.”
“The other major finding was that Group 12 [F] resistance in wild radish was much higher than we expected across the farm,” he says.
This has led the Birches to include more premium products in their program to target resistant ryegrass and wild radish, and drive down the weed seed bank as quickly as possible. On the flip side, they also discovered that they can save money by using trifluralin at lower rates in seasons with good growing conditions, where there is less need for a long residual effect.
“In those years where the crop gets off to a good start, the crop competition effect kicks in early to suppress weeds,” says Daniel.
By taking on board the resistance testing results from weed seed samples collected across the state, Daniel was reassured by the fact that the resistance issues they faced were essentially the same as other growers.
“The big take home message for us was the power of mode of action mixtures,” he says. “From the overall survey results across Australia, the resistance frequency to stand-alone pre-emergence herbicides ranged from 10 to 34 per cent, yet resistance to herbicide mixtures ranged from 0 to 6 per cent.”
Armed with knowledge about the resistance profile of their weeds, the Birches are combining some older chemistry with newer, premium herbicides for maximum effect.
The AHRI resistance testing program is led by Dr Roberto Busi. In 2019, annual ryegrass seed samples from 298 farms were submitted, representing 579 populations from four states in Australia, and these were tested for resistance to 21 herbicides applied at the recommended rate – 12 standalone and nine two-way mixtures.
In total, 15 876 individual resistance tests were conducted to screen two million seeds against registered herbicides and herbicide mixtures at the recommended label rate.
Dr Busi says the mixtures that growers can confidently incorporate in their annual ryegrass program are trifluralin + Sakura mix, Luximax + triallate, and clethodim + butroxydim.
“When applied at full rate for each component, these mixtures can achieve a better outcome than the same herbicides applied as stand-alone treatments against annual ryegrass with known resistance,” he says.
For wild radish, 200 samples were tested over a period of two years and resistance to Groups 2 [B], 4 [I] and 12 [F] were all over 50 per cent resistant. At 70 per cent resistant, Group 2 [B] herbicides should probably be dropped from most wild radish herbicide programs and Group 4 [I] is under threat.
“In 2021, we found that mixing Group 12 [F] with Group 6 [C] herbicide bromoxynil vastly improved control of wild radish,” he says. “From 51 per cent resistant to Group 12 [F] down to less than 15 per cent of samples resistant to the 12 [F] plus 6 [C] mixture.”
“It is important to emphasise that herbicide resistance testing is conducted on small, actively growing weed seedlings in a glasshouse environment,” says Roberto. “In the field, spray failures can easily occur, even in susceptible weed populations, if the herbicide is applied under the wrong conditions or to plants that are too large or stressed. This is particularly true for wild radish.”
AHRI Podcast: Interview with Daniel Birch about herbicide testing
AHRI Insight: Mixtures rock
Herbicide testing options

Article
News

Safe sorghum planting while controlling weeds

Pre-emergent herbicide, metolacholor and S-metolachlor, have been used in Australia primarily to control grass weeds for over 40 years. To date, no instances of resistance to this active ingredient have been documented in Australia and even internationally the few cases of resistance are in broadleaf weeds only. Resistance in northern summer grasses is probably low at present.
Syngenta’s field biology manager, Rob Battaglia, says some recent changes to the label use patterns and the launch of a new seed safener product will further expand the usefulness of S-metolachlor products, such as Dual Gold® and Primextra Gold®, in summer crops while protecting sorghum seedlings from herbicide damage.
Syngenta’s field biology manager, Rob Battaglia, says the new use patterns for Dual Gold® in sorghum, cotton and fallow centre on extending application flexibility and residual activity of the herbicide on target weeds.
“S-metolachlor is registered for use in a wide range of crops, including sorghum, maize, sweetcorn, soybean, sunflower and cotton, as well as in fallow situations,” he says. “The new use patterns in sorghum, cotton and fallow centre on extending application flexibility and residual activity of the herbicide on target weeds.”
In sorghum, a rate of 1.0 to 2.0 L/ha can be applied either as a single application before the crop or weeds emerge, or as a split application pre and post crop emergence (up to 6-leaf stage). Similarly, the full rate can be applied after harvest to establish the fallow or 1.0 to 1.5 L/ha can be applied pre-emergent to weeds at fallow establishment followed by 0.5 to 1.0 L/ha within 4 weeks. Be sure to observe replant intervals when planning the next crop.
In cotton, a single application of 1 L/ha either pre-emergent (before, at, or immediately after, planting), over-the-top or directed stand-alone spray or over-the-top mixed with Roundup Ready herbicide on Roundup Ready FLEX® cotton.
“There are several factors that affect the length of effective residual activity of S-metolachlor, some of which are outside the grower’s control,” says Rob. “The product needs to be incorporated and has interactions with rainfall, temperature, soil type, soil organic matter and stubble. Having more flexibility in the application timing gives growers the ability to compensate for some of these factors and control new waves of weed germinations for longer.”
Untreated strips are a good indicator of the seed bank and potential weed burden in a field. The pre-emergent herbicide treated area on the left has far fewer weeds than the untreated section of the field on the right, which suffered significant yield loss due to feathertop Rhodes grass infestation.
S-metolachlor is only active on weeds that have not yet emerged and has no effect on weeds that have already emerged from the soil or that do not come in contact with the herbicide as they emerge from the soil. It is essential to control already-emerged weeds first and then apply the pre-emergent to control subsequent flushes of weed germinations.
“There are some situations where the residual herbicides will appear to be less effective than they should, but this can often be attributed to compromised application timing, limited rainfall and soil conditions, rather than herbicide performance,” says Rob. “The difficultly in achieving perfect application timing and incorporation with rainfall is one of the main reasons why the new use patterns for Dual Gold® have been registered. Pre-emergent herbicides are best used within the WeedSmart Big 6 integrated weed management program and not as a stand-alone control measure.”
While other crops listed on the S-metolachlor label can metabolise the herbicide, sorghum requires a seed safener to protect the germinating plants from the herbicidal effects of S-metolachlor. The new Epivio C® seed safener replaces Concept II® and provides better overall protection for sorghum seed.
S-metolachlor damage is seen as distorted and twisted growth in sorghum, the rightmost plant is unaffected (protected by seed safener).
In Syngenta’s product development trials in Queensland and NSW, they measured an 11 per cent increase in plant stand and a 7 per cent increase in sorghum yield in crops where the seed was treated with Epivio C®compared to Concept II®. Epivio C® has also demonstrated improvements in seed safety and shelf-life for carry-over seed.
“Epivio C® is applied as seed treatment and when the seed is planted into moist soil the product is taken up into the plant and improves the metabolism of the herbicide in the seedling, resulting in no crop symptoms,” says Rob. “The result is better crop establishment and healthier plants that can better compete against weeds that germinate later in the season.”
Epivio C plot trial demonstrating the benefit of the seed safener in supporting robust germination and establishment. No safener (left) compared to Epivio C safener (right).
There is evidence that growers can maintain crop yield and reduce summer grass seed production by planting sorghum crops at a density of 10 plants/m2 and a row spacing of 50 cm.
The WeedSmart Big 6 includes diversity in crops and pastures, crop competition and mixing and rotating herbicide mode of action groups.
More information

Podcast: Seed safener explainer (starts around the 22 min mark) 
Article: Weaponise sorghum crops to take out feathertop Rhodes grass and awnless barnyard grass

Article
News

Investigate adverse experiences when using herbicides

A shuttle of glyphosate applied over the top of a Roundup Ready cotton crop was recently shown to also contain a damaging level of 2,4-D impurity, resulting in significant crop injury and yield loss.
The grower involved did not accept the suggestion that the crop damage was due to poor sprayer decontamination or spray drift from a fallow application of 2,4-D, and he was able to prove the problem was due to product impurity.
2,4-D herbicide injury in cotton after the crop was sprayed with glyphosate product contaminated with 2,4-D.
Other shuttles of the same batch may have been applied to fallow weeds where the residual 2,4-D in the glyphosate would have gone unnoticed. Full rate 2,4-D in glyphosate is known to compromise glyphosate efficacy, but studies of low-rate 2,4-D impurity in glyphosate could not be found.
Where can impurities come from?
While the agricultural chemical manufacture and supply chain in Australia is considered first-class and is highly regulated, there is an acceptance that the nil-impurity requirement for the manufacture of agricultural chemicals is unattainable in facilities that use multi-purpose equipment for synthesis, formulation and packaging of products.
Companies therefore apply their own quality assurance standards before releasing products for distribution and sale. If the level of risk posed by certain residual impurities in a product is underestimated, there is potential for instances of crop injury, pesticide residue in produce or poor performance of the product on the intended target weed, fungus or pest.
Mistakes can and do happen within the manufacturing process and chemical supply and distribution chain. To ensure that risks of contamination are minimised and that quality assurance protocols are followed carefully, it is important that any breaches or errors are identified quickly, reported and investigated.
Keep good records of each spray event, including batch numbers of applied product, to help identify the cause of adverse experiences with herbicides.
There are two important things to note: firstly, the current regulations specify that crop protection products must contain nil impurities (other than manufacturing impurities listed in the APVMA standard); and secondly, companies are required to recall product batches when contamination issues are identified. The Australian Pesticide and Veterinary Medicines Authority (APVMA) oversees a highly regulated system of registration, compliance and enforcement on crop protection products.
Assess potential application issues
When misapplication (wrong product applied, incorrect mixing, contaminated product etc) occurs, symptoms of affected plants are usually uniform throughout the treated area. It is often suggested that poor application technique or poor sprayer decontamination is the reason for crop injury or poor weed control results – suggesting a grower ‘own-goal’. Such potential errors must be considered, but if best practice spray techniques and spray rig decontamination procedures have been followed, product impurity should also be considered and investigated.
The chemistry of the product will determine the risk of residues being held within the tank and spray lines of the application rig. This is why there are differences in the sprayer hygiene requirements after using particular products.
Most modern spray rigs have impervious rubber and plastic, or stainless steel components, drastically reducing the risk of chemical absorption and subsequent extraction. Residues on the rubber surfaces are the main concern, and all registered cleaners will physically remove residues when used as directed, but cracked rubber components can present a contamination risk. All filters/strainers must be cleaned and all actuators and taps musts be cycled as the cleaner is run through the spray boom and tank loading system, agitators and tank.
Crop injury or poor weed control that is associated with just one sprayer tank load would suggest sprayer contamination. Effects from contaminated tanks are usually worse at the beginning of the spray run, with damage diminishing with spraying and tank reloading. The field pattern can provide clues to the sprayer filling routine in the field where the crop damage occurred.
The other major reason commonly cited for crop injury in spray drift. Although there is always some small amount of drift when agricultural chemicals are sprayed from a ground rig, the amount is down to ‘virtually safe’ levels within a few tens of metres. If the conditions are very windy, or the boom is too high, or the droplet size too small, spray could drift a few hundred metres from the application ground rig.
Spray droplets may travel a few feet to several kilometres from the targeted area, depending on weather conditions and spray application; but the potential for drift damage decreases with distance because droplets are deposited or become diluted in the atmosphere. The pattern of injury is normally seen most prominently on the section of the field closest to the sprayer that generated the spray drift, and decreases across the field.
During inversion conditions, a similar amount of product is subject to drift, but the drifting product will not dilute as much in the air, so concentrations at specific locations can be higher than expected in non-inversion conditions.
What to do if your crop is damaged or weeds don’t die as expected?
Along with several other possible causes, unintended application of contaminated product should be considered as a potential explanation for crop injury or poor weed control.
Keep in mind that if product impurity is the problem, it is most likely due to a low-dose effect that may be difficult to diagnose or may take longer to express in the target weeds or susceptible crops.
Finding the cause of an ‘adverse experience’ with herbicide is one of the most important reasons to keep accurate and detailed spray records.
If a problem occurs:

Take detailed, time-stamped photographs of the crop or weeds and record everything you know about the crop or fallow management, weather conditions in the weeks prior to the damage being seen, spray history of the field etc. If possible, geotag the photos so they can be easily associated with the correct field.
Record the relevant batch numbers of the chemicals used, which can be checked against the retention samples at the factory if necessary. Collect samples from drums of product used prior to the injury being observed (up to 14 days prior to symptoms being obvious). When you take samples, make sure there are witnesses who can vouch for the voracity of the evidence you have collected. Testing for one impurity (e.g. 2,4-D in glyphosate) costs less than $500 per sample.
Document the injury over time. For example, injury in cotton from low rates of 2,4-D will grow out in two weeks, but injury from higher rates, could last three to four weeks and are the most likely to result in yield loss. Similarly with weeds although the impact may be more difficult to document.
Mark out the affected area in the field to help assess crop yield loss at the end of the season. Note the pattern and intensity of the problem across the field.
Eliminate as many possible causes as you can. Re-assess the application technique and equipment, consider the pattern of damage in the field, look at the weather conditions for the relevant period of time and so on.
Test for herbicide resistance in weeds.
Report the crop damage or poor weed control. The APVMA administers the Adverse Experience Reporting Program, which allows anyone to report a problem with an agricultural chemical, including crop and plant damage, for example, plant death, severe stunting or significant yield loss. This is also the way to report poor weed control outcomes.

The APVMA acknowledges there is likely under-reporting of adverse experiences. The magnitude of under-reporting is unknown and provides limitations in quantifying product risk.
Investigations of spray drift are conducted by the relevant state government body, for example: NSW EPA (call Environment Line: 131-555), Biosecurity Queensland (call 132-523) and Chemical Standards Officer (Victoria) (call 03 5430 4463). Industry organisations will also support growers impacted by chemical damage to crops.
If the damage is due to factors other than spray drift, the affected party will need to take legal action and seek compensation themselves.
Related resources
Is poor weed control due to herbicide resistance?

Subscribe to the WeedSmart Newsletter