Read time: 4 minutes

Quick, test your winter weed escapes

This winter, researchers are recommending that growers and agronomists consider collecting live plant samples for herbicide resistance testing as a first step to identify and manage herbicide resistance in crop.

The first multi-species herbicide resistance survey conducted in the Northern grain growing regions of NSW and Queensland has shown that testing for herbicide susceptibility is well worthwhile as there are likely to be products that are still effective on weeds that are resistant to other modes of action.

Dr John Broster, Charles Sturt University recommends growers conduct regular herbicide resistance testing to better inform their herbicide program decisions.

Results from the ‘Quick Test’, offered by Plant Science Consulting, will usually provide a guide for herbicide strategies to use in the current season to stymie the effects of herbicide resistance. If weeds escape herbicide applications early in the season they will add large quantities of seed to the weed seed bank for next year, but if these plants can be killed this season their impact will be greatly reduced.

Testing weed seed at the end of the season is also a valuable tool to make more informed decisions for next season’s herbicide program, particularly for pre-emergent herbicides, which cannot be assessed using the Quick Test. There are three weed seed testing services in Australia, including Charles Sturt University.

The implementation of a variety of WeedSmart tactics, such as the double knock, mixing and rotating herbicides, stopping seed set and harvest weed seed control will also have a lasting impact on weed numbers.

With GRDC investment, Dr John Broster, Charles Sturt University NSW and Dr Michael Widderick, Queensland Department of Agriculture and Fisheries, Queensland led their respective teams through the process of testing samples and analysing the results for weed seed collected throughout the Northern cropping region in 2016 and 2017.

Weed seed samples were collected from 440 paddocks across northern NSW (244) and Queensland (196). The seeds were sown in controlled conditions and when the plants reached the three to five leaf stage they were tested for resistance to a range of herbicides. While collecting weed seed samples the researchers also assessed the weed density in each surveyed paddock.

The winter-growing weed species collected across the northern region and screened at CSU included annual ryegrass, wild oats, barley grass, brome grass, wild radish, Indian mustard, turnip weed and African turnip weed.

For NSW, this survey adds weight to other weed surveys conducted over recent years. Dr Broster says around 1000 paddocks in NSW and Queensland have now been surveyed between 2014 and 2018.

Wild oats is widespread across NSW and Queensland, having been found in just over half the paddocks surveyed. Annual ryegrass was also very abundant but so far only found in NSW, where it was present in almost 70 per cent of paddocks surveyed.

Barley grass, brome grass, Indian mustard weed and turnip weed were found only in NSW while wild radish and African turnip weed were mainly found in Queensland.

“The stand-out finding from our broader testing in NSW is that approximately 60 per cent of collected annual ryegrass populations were resistant to diclofop, sulfometuron and imazamox/imazapyr,” says Dr Broster. “Resistance to other commonly used herbicides for ryegrass control is relatively lower, but must be noted if these herbicides are to remain options for future herbicide programs. We measured resistance to clethodim (6%), trifluralin (7%) and glyphosate (6%) herbicides in the collected ryegrass populations sampled across the NSW regions.”

“Glyphosate resistance in ryegrass is more prevalent in the northern NSW regions than other parts of the state. Resistance to selective herbicides is lower in the northern NSW region than other parts of the state.”

2016 northern NSW and Queensland survey results summary for winter weed species

  • All results quoted below are the % of surveyed populations where resistance was detected.
  • Ryegrass only found in NSW – 94 populations tested. Resistance was found to diclofop (Hoegrass, 44%), imazamox/imazapyr (Intervix, 33%), sulfometuron (Oust, 29%), glyphosate (Roundup, 10%) and clethodim (Select, 2%). The sampled populations were susceptible to prosulfocarb + s-metolachlor (Boxer Gold) and pyroxasulfone (Sakura). All but one population was susceptible to trifluralin (Treflan, 1% developing resistance).

Glyphosate resistant annual ryegrass, 2016 Northern Region weed survey. Map courtesy of Dr John Broster, Charles Sturt University NSW.

  • Wild oats – 193 populations tested across Queensland (71) and northern NSW (122). Resistance was found to clodinafop (Topik, 38%) and Hussar (idosulfuron, 4%). These populations were fully susceptible to clethodim (Select), glyphosate (Roundup) and triallate (Avadex Xtra).
  • Barley grass – 17 populations, all in NSW. All susceptible to quizalofop-p-ethyl (Targa), clethodim (Select), mesosulfuron-methyl (Atlantis) and paraquat (Gramoxone).
  • Brome grass – 13 populations, all in NSW. Resistance found to mesosulfuron-methyl (Atlantis, 36%) only with all populations susceptible to quizalofop-p-ethyl (Targa), clethodim (Select), imazamox/imazapyr (Intervix) and glyphosate (Roundup).
  • Wild radish – 12 populations from Queensland and northern NSW. Resistance found to chlorsulfuron (Glean, 8%), diflufenican (Brodal, 80%) and 2,4D Amine, 77%. All populations were susceptible to glyphosate (Roundup), imazamox/imazapyr (Intervix) and Atrazine.
  • Indian hedge mustard – 7 populations found only in NSW. Resistance was found to chlorsulfuron (Glean, 17%) and diflufenican (Brodal, 43%). All populations were susceptible to glyphosate (Roundup), imazamox/imazapyr (Intervix), Atrazine and 2,4D Amine.
  • Turnip weed – 32 populations found in Queensland and northern NSW. Resistance was found to chlorsulfuron (Glean, 19%) and imazamox/imazapyr (Intervix, 11%). All populations susceptible to glyphosate (Roundup), Atrazine, diflufenican (Brodal) and 2,4D Amine.
  • African turnip weed – 17 populations found in Queensland and northern NSW. Resistance found to 2,4D Amine while all populations were susceptible to glyphosate (Roundup), chlorsulfuron (Glean), imazamox/imazapyr (Intervix) and Atrazine.

Related links:

Related Articles

View all
Article
News

Never cut the herbicide application rate

Scientific studies have demonstrated that resistance can rapidly evolve in weeds subjected to low doses of herbicide. Some weeds can develop resistance within a few generations. Full rates when mixing herbicides too! When mixing herbicides it is important that each product is still applied at the full label rate to ensure high mortality. Applying different chemicals in one mix can provide an additive advantage. It is important to understand the mode of action of each herbicide on the plant when preparing a herbicide mix. This is just as important for pre-emergent grass weed mixes as it is for post-emergent mixes aimed at broadleaf weed control. ALWAYS READ THE LABEL. Surrounding weed seeds with a combination of pre-emergent herbicides with different modes of action can give a high level of control and help extend the useful life of all the chemicals used. The high level of control must be supported with additional control measures for all survivors. All products with different modes of action must be applied at full label rates for this to be an effective strategy.   Mixing two chemicals with the same mode of action can achieve some additional efficacy, however, the mix should deliver the combined full rate to ensure a lethal dose. The amount of stubble present and crop safety are all important considerations when mixing chemicals. For example, when using a tank mix of Avadex® and trifluralin to control ryegrass in wheat, the rates used will vary depending on the sowing system and level of stubble retention. Be sure to get good advice. Many herbicides on the market are a combination of two or more modes of action within the one product. These products must be applied at the full label rate to be effective. Having dual action does not negate the need to change herbicide products and rotate modes of action. Repeated use of any single strategy will reduce the effectiveness of that strategy over time.  
Article
News

Spray well – correct nozzles, adjuvants and water rates

Spray application is a technical field and growers need to make sure their equipment and application techniques are spot-on. The GRDC Spray Application GrowNote provides detailed information and about 80 videos to demonstrate key skills. Prevent spray-drift The focus of spraying herbicide needs to be on doing the job right so the weeds receive the correct dose and die, and this includes reducing the air borne fraction to a bare minimum. Bill Gordon’s 10 Tips for Reducing Spray Drift Choose all products in the tank mix carefully. Understand the product mode of action and coverage requirements. Select (and check) the coarsest spray quality that will provide effective control. Expect that surface temperature inversions will form as sunset approaches and will likely persist overnight and even beyond sunrise on many occasions. DO NOT SPRAY. Use weather forecasts to inform your spray decisions. Only start spraying when the sun is about 20 degrees above the horizon and when the wind speed has been above 4–5 km/hr for more than 20–30 minutes, and clearly blowing away from any adjacent sensitive crops or areas. Set the boom height to achieve a double overlap of the spray patterns. Avoid higher spraying speeds. Leave buffers unsprayed if necessary and come back. Continue to monitor conditions, particularly wind speed, at the site during the spray operation High water rates don’t have to slow you down Some growers are concerned that increasing the water rate when applying herbicide will slow down their spray operation and cost them money. However, the biggest financial loss during spraying usually comes from a failed spray job. To keep your spray operation as time efficient as possible when using more effective and reliable application volumes, you can: Use nurse tanks around the farm to reduce the time spent travelling back to a central re-fill point. Use a larger pump, e.g. 2.5 inch, to make re-filling quicker. Pre-mix the batch while the sprayer is operating. Many mixes can be held in the mixing tank for up to 6 hours. However, wettable granules and suspension concentrates will need agitation to keep them in solution. For pre-emergent herbicides in high stubble situations, carrier volume has a large effect on the level of control achieved. Across four trial sites Dr Borger’s research demonstrated that ryegrass control with trifluralin or Sakura® increased from 53% control when the carrier volume was 30 L/ha to 78% control when the carrier volume was increased to 150 L water/ha in high Water quality and mixing order Water quality is often overlooked as a possible contributor to herbicide failure and can lead to confusion over the herbicide resistance status of weeds on a property. Water should be considered as one of the chemicals in any mix, given that water quality varies markedly depending on its source. Getting the mixing order right is essential for effective spray results. Don’t start mixing until the water quality is right Podcast – Mixing herbicides Adjuvants Sometimes adding an adjuvant is beneficial and sometimes it is detrimental; and there is an art to knowing how to best deploy these additives. When weeds are susceptible to the applied herbicides, the effectiveness of adjuvants generally goes un-noticed. Correctly applied adjuvants can reduce the impact of low level herbicide resistance by helping to maximise the amount of herbicide taken up by the plant.
Article
News

Clean borders – avoid evolving resistance on the fence line

About one-quarter of glyphosate-resistant populations within broadacre cropping situations across Australia come from fencelines and other non-cropping areas of the farm. Along paddock borders, where there is no crop competition, weeds can flourish and, if not controlled, set lots of seed. The traditional approach has been to treat these weeds with glyphosate to keep borders clean but after 20-odd years this option is now failing and paddock borders are becoming a significant source of glyphosate-resistant weed seed. Weed researcher Eric Koetz said the limited options for managing weeds along irrigation infrastructure and other non-crop areas is a problem and is putting additional pressure on knock-down herbicides in irrigated systems. In some situations, cultivation can be used to kill the weeds and provide a firebreak, but on light soils this may pose an erosion risk and mowing or slashing may be safer options. Another possible tactic is to continue using herbicides but to ensure that a clean-up operation is carried out before any survivors can set seed. Some growers are choosing to increase the heat on weeds along the borders by planting the crop right to the fence and then baling the outside lap and spraying with a knockdown herbicide to kill any weeds and provide a firebreak. Another good option in some situations is to maintain a healthy border of vegetation using non-invasive grasses. In Queensland, buffel grass is a good example of a grass that can outcompete other weeds while not invading crop lands. If only herbicides are used on fencelines, resistance is inevitable. Surviving weeds on fencelines have no competition and access to plenty of soil moisture, so they set a lot of seed and resistance can easily flow into neighbouring paddocks. Other resources It’s time for a glyphosate intervention Farm hygiene cottons on – Cleave Rogan, St George What’s new in management of herbicide resistant weeds on fencelines? Keeping the farm clean – Graham Clapham, Norwin Don’t jeopardise glyphosate for clean fencelines Keeping fencelines clean Resistance risk to knock-down herbicides on irrigated cotton farms

Subscribe to the WeedSmart Newsletter