Read time: 4 minutes

Stacking the odds against awnless barnyard grass

Sometimes herbicide resistance comes with a fitness penalty that growers can use as an Achilles’ Heel to drive down weed seed production.

Unfortunately, glyphosate resistance seems to confer no such disadvantage on awnless barnyard grass.

In a recent random survey of summer-growing weeds in the northern grains region, 36 per cent of awnless barnyard grass (Echinochloa colona) populations proved resistant to glyphosate.

Awnless barnyard grass response to no crop competition – glyphosate resistant (GR) ABG with 0 mungbean plants/pot (left) and glyphosate susceptible (GS) ABG with 0 mungbean plants/pot (right).

Through a focused effort to better understand this problematic weed, GRDC invested in a series of studies on various aspects of its ecology. This work was done by QAAFI weed researchers, led by Dr Bhagirath Chauhan at the University of Queensland, Gatton.< “Awnless barnyard grass is one of the top three most problematic weeds of summer crops and fallows in Australia,” says Dr Chauhan.

“Our studies looked at environmental and cultural effects on germination, the impact of crop competition and early weed control, seed retention at harvest and the effect of low rates of glyphosate.”

These studies confirmed that awnless barnyard grass can emerge in spring, summer and autumn in Queensland, with temperature being the main driver of seed germination.“Germination is rapid for seed exposed to the light on the soil surface, as in no-till summer fallows,” he says. “As the temperature increases, seed buried up to 8 cm below the surface can also germinate. Covering the soil with crop residue suppressed germination by about 20 per cent, from 70 per cent without cover down to 47 per cent with sorghum trash.”

To run down the seedbank of awnless barnyard grass, whether glyphosate resistant or not, requires two to three years of no recruitment through ‘seed rain’. Strategic tillage is only useful if the seed bank is buried to a depth of more than 8 cm and then not disturbed again for many years as the seed will persist for longer than two years once buried.

“The best way to reduce seed production in this weed is to grow competitive crops in summer and to focus on controlling weeds for the first two weeks after crop emergence,” says Dr Chauhan.

“Both mungbean and sorghum crops can significantly suppress awnless barnyard grass growth and reduce the quantity of seed set over the warmer months.”

“Compared with weed plants grown alone, mungbean interference of four and eight plants per pot reduced weed seed production by 85 to 95 per cent. These reductions were similar for both glyphosate resistant and susceptible biotypes.”

Mungbean crop competition suppresses awnless barnyard grass (crop plants removed to show the effect on weed growth and habit. From left to right: GR ABG with 4 mungbean plants/pot; GS ABG with 4 mungbean plants/pot; GR ABG with 8 mungbean plants/pot; GS ABG with 8 mungbean plants/pot.

Likewise, even a sorghum crop at one metre row spacing, suppressed weed growth and seed production. Awnless barnyard grass produces 4000 seeds per plant when emergence is with the crop, 1000 seeds per plant when emergence is two weeks later and less than 100 seeds per plant when emergence is four and six weeks after crop emergence.

“This shows the importance of early weed control – even in widely-spaced sorghum,” says Dr Chauhan. “Plants that do emerge with the sorghum crop or within the first two weeks retain about 45 per cent of their seed at harvest.

Although larger plants produce more seed than smaller ones, plant size did not predict the level of seed retention at sorghum harvest.”

Awnless barnyard grass response to early weed control in wide-row (1 m) sorghum – BYG emerging with the crop (left) vs emerging after the crop (right).

While harvest weed seed control might be less practical in sorghum than other summer crops, removing almost half of the seed produced in-crop would be a valuable contribution to reducing the seed bank.

The random weed survey indicated that all populations, whether resistant to glyphosate or not, were susceptible to propaquizafop, clethodim and imazapic, providing some herbicide options for growers to achieve early weed control.n terms of pure plant ecology, there were few surprises – some awnless barnyard grass biotypes are more invasive than others, but growth and seed production of this weed at all moisture levels and environmental conditions ensures survival of the species and contributes to its weedy nature.

“In a study of ten awnless barnyard grass populations we saw large variations in many traits, but growth behavior and seed production potential in these populations did not help predict the likelihood of glyphosate resistance evolving,” he says. “Soil moisture is the main driver of weed growth and seed production.

However, when this weed is well-watered even the glyphosate-resistant populations were three times more susceptible to the herbicide than when the weed is water-stressed.”

In both resistant and susceptible biotypes, very low rates of glyphosate were shown to stimulate growth. This is known as the ‘hormesis phenomenon’, where a stress can stimulate a positive response.

Plants treated with glyphosate at active ingredient rates of 2.5 to 40 g/ha grew taller and produced more leaves, tillers, inflorescences and seeds than the control treatment. These rates are far lower than label rates for awnless barnyard grass and demonstrate the importance of accurate mixing and application of herbicides to ensure lethal rates are applied.

These weed ecology studies have demonstrated that glyphosate resistance in awnless barnyard grass does not confer any advantage or disadvantage over susceptible biotypes. The recommendation then is to treat all populations as resistant to glyphosate and to stack as many of the WeedSmart Big 6 tactics against it as possible, even if each tactic only provides a relatively small control benefit.

More resources

Related Articles

View all
Article
News

WeedSmart agronomist set to tackle high rainfall zone weeds

Every locality has its own spectrum of weeds, and growers face different opportunities and challenges regarding the control tactics they can employ. The WeedSmart Big 6 approach is a practical way to ensure that an integrated weed management program is put in place that disrupts weed seed production and the evolution of herbicide resistance. Commencing in January 2021, Jana Dixon has joined the WeedSmart team of extension agronomists, with a focus on applying the Big 6 to manage weeds in the high rainfall cropping systems of southern Australia – from Esperance in WA to south-eastern SA, Tasmania and south-western Victoria. Jana will add to the dedicated and experienced extension agronomists on the WeedSmart team with Peter Newman in the Western region, Chris Davey in the South, Greg and Kirrily Condon in the East and Paul McIntosh in the North. Jana Dixon has joined the WeedSmart team of extension agronomists, with a focus on applying the Big 6 to manage weeds in the high rainfall cropping systems of southern Australia – from Esperance in WA to south-eastern SA, Tasmania and south-western Victoria. Jana hails from the Mid North of SA, and began working at Pinion Advisory (previously Rural Directions) while she was studying agriculture at the University of Adelaide. She has been employed full-time at Pinion Advisory since January 2019 as an agribusiness consultant, based in Clare, and spends most of her time delivering agronomy and farm business advice to clients from a wide range of cropping regions in South Australia. Pinion Advisory is a foundation WeedSmart sponsor and Jana has been involved in two WeedSmart Week events already – the first as a participant and grower group organiser at the Horsham event in 2019 and then as the local organiser for WeedSmart Week 2020 in Clare. In welcoming her to the WeedSmart team, program manager Lisa Mayer says Jana brings energy, commitment and insight to deliver communications focussed on the southern region’s high rainfall regions. “Growers in the southern high rainfall zones are facing some serious issues with herbicide resistance influencing their farming decisions,” says Ms Mayer. “Jana will be engaging with agronomists, growers and researchers in each of the distinct high rainfall zones to understand the complexities and look for practical ways to apply the WeedSmart Big 6 in various cropping scenarios.” “We plan to deliver WeedSmart Week in Esperance, part of Western Australia’s high rainfall cropping zone, in August 2021 and Jana will play a key role in the planning and delivering of our annual 3-day flagship event.” Jana says her experience with the WeedSmart program has been very positive and she has been particularly impressed with the support the program has from all sectors of the grains industry. Newly appointed WeedSmart extension agronomist, Jana Dixon (green cap) leading discussions with farm visit host, Ben Marshman, Owen SA, and growers and agronomists attending WeedSmart Week 2020 in Clare. “I have spoken to many growers and agronomists who have found real value in the information that the WeedSmart program delivers,” she says. “For many it is as much about considering another operator’s philosophy on dealing with weeds, and taking a fresh look at their own systems, rather than just learning about a new tactic or the traits of a new herbicide in isolation from the big picture.” She says the high calibre of industry people who contribute their time and expertise to the program is testament to the value WeedSmart has to agribusiness, growers, agronomists and researchers alike. In taking on the responsibility for delivering information tailored for the high rainfall zones Jana says she is pleased to have an extensive network of contacts through Pinion Advisory, with offices in a number of high rainfall areas to provide easy access to local agronomists and growers. She is also aware that there are major differences in weed spectrums and farming systems in each high rainfall zone and plans to take full advantage of the opportunity this role presents to expand her understanding of different approaches to weed management. “The long and favourable growing season and the associated prolonged periods of weed germination, is a key factor that I see potentially impacting on a grower’s weed management strategies in these regions,” she says. “On the other hand, access to highly diverse rotations and a focus on crop competition are two strategies that can play an important role in achieving excellent weed management in these regions.” “I am keen to engage with anyone working and farming in the high rainfall zones to build my knowledge and understanding,” she says. “And to create opportunities to develop and extend the WeedSmart Big 6 strategies, both herbicide and non-herbicide, that work in each area and in different situations.” WeedSmart is the industry voice delivering science-backed weed control solutions with support from the Grains Research and Development Corporation (GRDC), major herbicide, machinery and seed companies, and university and government research partners, all of whom have a stake in sustainable farming systems. You an follow Jana on Twitter and keep up to date with the HRZ here.
Article
News

Never cut the herbicide application rate

Scientific studies have demonstrated that resistance can rapidly evolve in weeds subjected to low doses of herbicide. Some weeds can develop resistance within a few generations. Full rates when mixing herbicides too! When mixing herbicides it is important that each product is still applied at the full label rate to ensure high mortality. Applying different chemicals in one mix can provide an additive advantage. It is important to understand the mode of action of each herbicide on the plant when preparing a herbicide mix. This is just as important for pre-emergent grass weed mixes as it is for post-emergent mixes aimed at broadleaf weed control. ALWAYS READ THE LABEL. Surrounding weed seeds with a combination of pre-emergent herbicides with different modes of action can give a high level of control and help extend the useful life of all the chemicals used. The high level of control must be supported with additional control measures for all survivors. All products with different modes of action must be applied at full label rates for this to be an effective strategy.   Mixing two chemicals with the same mode of action can achieve some additional efficacy, however, the mix should deliver the combined full rate to ensure a lethal dose. The amount of stubble present and crop safety are all important considerations when mixing chemicals. For example, when using a tank mix of Avadex® and trifluralin to control ryegrass in wheat, the rates used will vary depending on the sowing system and level of stubble retention. Be sure to get good advice. Many herbicides on the market are a combination of two or more modes of action within the one product. These products must be applied at the full label rate to be effective. Having dual action does not negate the need to change herbicide products and rotate modes of action. Repeated use of any single strategy will reduce the effectiveness of that strategy over time.  
Article
News

Spray well – correct nozzles, adjuvants and water rates

Spray application is a technical field and growers need to make sure their equipment and application techniques are spot-on. The GRDC Spray Application GrowNote provides detailed information and about 80 videos to demonstrate key skills. Prevent spray-drift The focus of spraying herbicide needs to be on doing the job right so the weeds receive the correct dose and die, and this includes reducing the air borne fraction to a bare minimum. Bill Gordon’s 10 Tips for Reducing Spray Drift Choose all products in the tank mix carefully. Understand the product mode of action and coverage requirements. Select (and check) the coarsest spray quality that will provide effective control. Expect that surface temperature inversions will form as sunset approaches and will likely persist overnight and even beyond sunrise on many occasions. DO NOT SPRAY. Use weather forecasts to inform your spray decisions. Only start spraying when the sun is about 20 degrees above the horizon and when the wind speed has been above 4–5 km/hr for more than 20–30 minutes, and clearly blowing away from any adjacent sensitive crops or areas. Set the boom height to achieve a double overlap of the spray patterns. Avoid higher spraying speeds. Leave buffers unsprayed if necessary and come back. Continue to monitor conditions, particularly wind speed, at the site during the spray operation High water rates don’t have to slow you down Some growers are concerned that increasing the water rate when applying herbicide will slow down their spray operation and cost them money. However, the biggest financial loss during spraying usually comes from a failed spray job. To keep your spray operation as time efficient as possible when using more effective and reliable application volumes, you can: Use nurse tanks around the farm to reduce the time spent travelling back to a central re-fill point. Use a larger pump, e.g. 2.5 inch, to make re-filling quicker. Pre-mix the batch while the sprayer is operating. Many mixes can be held in the mixing tank for up to 6 hours. However, wettable granules and suspension concentrates will need agitation to keep them in solution. For pre-emergent herbicides in high stubble situations, carrier volume has a large effect on the level of control achieved. Across four trial sites Dr Borger’s research demonstrated that ryegrass control with trifluralin or Sakura® increased from 53% control when the carrier volume was 30 L/ha to 78% control when the carrier volume was increased to 150 L water/ha in high Water quality and mixing order Water quality is often overlooked as a possible contributor to herbicide failure and can lead to confusion over the herbicide resistance status of weeds on a property. Water should be considered as one of the chemicals in any mix, given that water quality varies markedly depending on its source. Getting the mixing order right is essential for effective spray results. Don’t start mixing until the water quality is right Podcast – Mixing herbicides Adjuvants Sometimes adding an adjuvant is beneficial and sometimes it is detrimental; and there is an art to knowing how to best deploy these additives. When weeds are susceptible to the applied herbicides, the effectiveness of adjuvants generally goes un-noticed. Correctly applied adjuvants can reduce the impact of low level herbicide resistance by helping to maximise the amount of herbicide taken up by the plant.

Subscribe to the WeedSmart Newsletter