Read time: 4 minutes

Taking a single shot at weeds

As farmers get their hands on fast and accurate weed mapping technology, the frequency of blanket herbicide spraying can be greatly reduced. With an accurate digital map that shows where the weeds are right now, most boomspray rigs can become low-cost spot sprayers.

For the past two years John Single and his son Tony have been using the air-borne weed sensor, Single Shot, developed by John’s other son Ben, to rapidly detect and map weeds on their dryland cropping property, Narratigah, near Coonamble, NSW.



John Single with a drone carrying the Single Shot weed sensor. By separating the weed mapping and weed spraying tasks the Singles can take a planned approach to their weed management throughout the year.

Ben saw the benefits of separating the weed detection and weed spraying tasks and set about building the platform and working with Robotic Systems to bring the idea to reality.

“The main aim is to stay ahead of herbicide resistance,” says John. “Ten years ago we started work on developing drone-mounted sensors that could take over the task of detecting weeds in a green-on-brown situation. Many sprayers, particularly later models, do not require any modifications and there are many benefits in having the weed mapping done separately rather than on-the-go.”

Weed maps enable growers to take a planned approach to their weed management throughout the year and to build a historical record of weeds in a paddock. The Single Shot sensor maps green-on-brown but are not limited to fallow situations. The sensors can be used in newly sown crops to map weeds that emerged on the planting rain or were missed in a previous application.

These patches, or individual weeds, can be treated in-crop or a pre-emergent can be applied to the patches at the end of the season. The sensor can also be used in-crop to identify high biomass areas within a paddock where high weed density requires more drastic action, such as cutting for hay, and in wide-row crops where the canopy does not fully close and weeds can be detected between the rows.

Screen shot of the Trimble guidance screen in operation with a Single Shot spray map.

The Singles have used the Single Shot technology in several different management scenarios already and the possibilities seem endless. John says they have used the sensor to identify survivor marshmallow and milk thistle plants in fallow and then spot spray them with a high rate of Starane to prevent seed set. They have mapped feathertop Rhodes grass in wheat to generate a map for applying pre-emergent herbicide post-harvest and have filtered data to segregate weeds based on size, giving them the option to apply a blanket spray on smaller weeds and a herbicide spike to treat larger weeds, or to use a second boom to apply two different products or rates. Where pre-emergent herbicides are used, a perimeter determined by the user can be added to cover the seed distribution area of the mother plant.

Another important role for Single Shot at Narratigah is to scout for survivor weeds after herbicide applications. The Singles crop 4500 ha and can map the farm at a rate of up to 300 ha per hour. This is one of the most important tasks in a herbicide program and yet it is generally not done effectively due to the time required. Having ‘eyes in the sky’ makes routine and accurate scouting practical after every spray treatment.

The sensor is capable of covering 300 ha/hr under continuous flight or targeting weeds greater than 5 cm diameter. Under normal operating conditions, and including battery changes, the Singles achieve a work rate of around 200 ha/hour. Critically, data processing can be done in the field, if the internet is available at the site, and is done at a speed 1.7 times faster than flight time.

Once a weed map has been created, the drone can be sent out again to take high resolution imagery of plants in specific locations in the paddock for identification purposes, allowing John and Tony to plan a herbicide program with their agronomist, based on exactly what’s in the paddock.

When it comes to spraying, having the weeds mapped before the spray operator gets in the cab means that the job can be done when conditions are suitable, including at night.

The real power of the Single Shot system is the ability to run simulations and to re-process the data to fine-tune a herbicide program based on weed size or density. The sensor requires just a 1 cm ‘brown’ perimeter around a weed to be able to detect the weed size.

The weed maps are built from images that are ten thousand times higher resolution than satellite images, giving a 1 cm sampling size. Every part of the paddock is photographed twice so obstacles such as stubble occlusion can be significantly reduced. The drone flies at a height of 75 m, following a pre-determined path, and can also be flown lower and or slower if necessary to collect specific data. The sensor also accurately identifies stressed weeds.

“Information is power and this has really put us back in control of our weed management,” says John. “We know how much chemical to buy to do the job at hand, we know the costs and can alter the chemistry to suit a budget if necessary, we can choose to blanket spray or spot spray, and our ability to apply the double knock tactic is greatly improved.”

Ready for unmanned aerial vehicle (UAV) spraying

In a bid to be one step ahead of the game, the Single Shot software will also calculate the shortest path for the sprayer, which is most useful when doing spot spraying on an ATV, or in the future, to deliver herbicide via a drone-mounted sprayer (UAV) or autonomous vehicles.

“We ran a scenario for treating about two thousand survivor weeds in a 125 ha paddock using a spray drone,” says Ben. “To apply a blanket spray to the paddock, the spray drone would need to travel about 310 km. Using the Single Shot software we determined the shortest path to reach all the weeds, which cut down the time required to do the job to just two and a half hours. The sprayer would only be applying herbicide for 16 km of the 54 km flight, and just 5 per cent of the paddock would have herbicide applied.”

Left: Actual weed coverage in a 125 ha paddock (blue line is the boundary, and purple is weed). Right: The path that the UAV would travel using the shortest route computation.

Weed mapping using tools and systems like Single Shot are putting growers back in the driving seat to cost-effectively and consistently implement the WeedSmart Big 6 tactics that underpin sustainable herbicide use and maintain productivity gains through no-till farming systems.

Related Articles

View all
Article
News

Never cut the herbicide application rate

Scientific studies have demonstrated that resistance can rapidly evolve in weeds subjected to low doses of herbicide. Some weeds can develop resistance within a few generations. Full rates when mixing herbicides too! When mixing herbicides it is important that each product is still applied at the full label rate to ensure high mortality. Applying different chemicals in one mix can provide an additive advantage. It is important to understand the mode of action of each herbicide on the plant when preparing a herbicide mix. This is just as important for pre-emergent grass weed mixes as it is for post-emergent mixes aimed at broadleaf weed control. ALWAYS READ THE LABEL. Surrounding weed seeds with a combination of pre-emergent herbicides with different modes of action can give a high level of control and help extend the useful life of all the chemicals used. The high level of control must be supported with additional control measures for all survivors. All products with different modes of action must be applied at full label rates for this to be an effective strategy.   Mixing two chemicals with the same mode of action can achieve some additional efficacy, however, the mix should deliver the combined full rate to ensure a lethal dose. The amount of stubble present and crop safety are all important considerations when mixing chemicals. For example, when using a tank mix of Avadex® and trifluralin to control ryegrass in wheat, the rates used will vary depending on the sowing system and level of stubble retention. Be sure to get good advice. Many herbicides on the market are a combination of two or more modes of action within the one product. These products must be applied at the full label rate to be effective. Having dual action does not negate the need to change herbicide products and rotate modes of action. Repeated use of any single strategy will reduce the effectiveness of that strategy over time.  
Article
News

Spray well – correct nozzles, adjuvants and water rates

Spray application is a technical field and growers need to make sure their equipment and application techniques are spot-on. The GRDC Spray Application GrowNote provides detailed information and about 80 videos to demonstrate key skills. Prevent spray-drift The focus of spraying herbicide needs to be on doing the job right so the weeds receive the correct dose and die, and this includes reducing the air borne fraction to a bare minimum. Bill Gordon’s 10 Tips for Reducing Spray Drift Choose all products in the tank mix carefully. Understand the product mode of action and coverage requirements. Select (and check) the coarsest spray quality that will provide effective control. Expect that surface temperature inversions will form as sunset approaches and will likely persist overnight and even beyond sunrise on many occasions. DO NOT SPRAY. Use weather forecasts to inform your spray decisions. Only start spraying when the sun is about 20 degrees above the horizon and when the wind speed has been above 4–5 km/hr for more than 20–30 minutes, and clearly blowing away from any adjacent sensitive crops or areas. Set the boom height to achieve a double overlap of the spray patterns. Avoid higher spraying speeds. Leave buffers unsprayed if necessary and come back. Continue to monitor conditions, particularly wind speed, at the site during the spray operation High water rates don’t have to slow you down Some growers are concerned that increasing the water rate when applying herbicide will slow down their spray operation and cost them money. However, the biggest financial loss during spraying usually comes from a failed spray job. To keep your spray operation as time efficient as possible when using more effective and reliable application volumes, you can: Use nurse tanks around the farm to reduce the time spent travelling back to a central re-fill point. Use a larger pump, e.g. 2.5 inch, to make re-filling quicker. Pre-mix the batch while the sprayer is operating. Many mixes can be held in the mixing tank for up to 6 hours. However, wettable granules and suspension concentrates will need agitation to keep them in solution. For pre-emergent herbicides in high stubble situations, carrier volume has a large effect on the level of control achieved. Across four trial sites Dr Borger’s research demonstrated that ryegrass control with trifluralin or Sakura® increased from 53% control when the carrier volume was 30 L/ha to 78% control when the carrier volume was increased to 150 L water/ha in high Water quality and mixing order Water quality is often overlooked as a possible contributor to herbicide failure and can lead to confusion over the herbicide resistance status of weeds on a property. Water should be considered as one of the chemicals in any mix, given that water quality varies markedly depending on its source. Getting the mixing order right is essential for effective spray results. Don’t start mixing until the water quality is right Podcast – Mixing herbicides Adjuvants Sometimes adding an adjuvant is beneficial and sometimes it is detrimental; and there is an art to knowing how to best deploy these additives. When weeds are susceptible to the applied herbicides, the effectiveness of adjuvants generally goes un-noticed. Correctly applied adjuvants can reduce the impact of low level herbicide resistance by helping to maximise the amount of herbicide taken up by the plant.
Article
News

Clean borders – avoid evolving resistance on the fence line

About one-quarter of glyphosate-resistant populations within broadacre cropping situations across Australia come from fencelines and other non-cropping areas of the farm. Along paddock borders, where there is no crop competition, weeds can flourish and, if not controlled, set lots of seed. The traditional approach has been to treat these weeds with glyphosate to keep borders clean but after 20-odd years this option is now failing and paddock borders are becoming a significant source of glyphosate-resistant weed seed. Weed researcher Eric Koetz said the limited options for managing weeds along irrigation infrastructure and other non-crop areas is a problem and is putting additional pressure on knock-down herbicides in irrigated systems. In some situations, cultivation can be used to kill the weeds and provide a firebreak, but on light soils this may pose an erosion risk and mowing or slashing may be safer options. Another possible tactic is to continue using herbicides but to ensure that a clean-up operation is carried out before any survivors can set seed. Some growers are choosing to increase the heat on weeds along the borders by planting the crop right to the fence and then baling the outside lap and spraying with a knockdown herbicide to kill any weeds and provide a firebreak. Another good option in some situations is to maintain a healthy border of vegetation using non-invasive grasses. In Queensland, buffel grass is a good example of a grass that can outcompete other weeds while not invading crop lands. If only herbicides are used on fencelines, resistance is inevitable. Surviving weeds on fencelines have no competition and access to plenty of soil moisture, so they set a lot of seed and resistance can easily flow into neighbouring paddocks. Other resources It’s time for a glyphosate intervention Farm hygiene cottons on – Cleave Rogan, St George What’s new in management of herbicide resistant weeds on fencelines? Keeping the farm clean – Graham Clapham, Norwin Don’t jeopardise glyphosate for clean fencelines Keeping fencelines clean Resistance risk to knock-down herbicides on irrigated cotton farms

Subscribe to the WeedSmart Newsletter