Read time: 5 minutes

Using your harvester to destroy weed seeds

Collecting and destroying weed seeds as part of the harvest operation is recognised as the most efficient and effective way to implement harvest weed seed control (HWSC) within an integrated weed management system.

Acknowledged as the ‘holy grail’ of the WeedSmart Big 6 tactics to manage herbicide resistance, HWSC was implemented on over 40 per cent of Australian grain farms in 2014 and adoption is expected to increase to 80 per cent by 2020.


Chaff impact mill machines render the weed seed unviable, causing the destruction of over 95 per cent of the weed seed that enters the mills.

There are currently six HWSC methods being used in Australia, all of which have been invented, adapted and adopted by Australian farmers. When choosing between these methods growers must consider the set-up cost, nutrient removal costs and labour requirements.

Most agree that the ultimate HWSC tool would complete the weed seed control in one pass at harvest, retain all stubble and nutrients and not require any follow-up work such as marketing hay or burning chaff. There are currently two machines that meet these requirements – the iHSD (Integrated Harrington Seed Destructor) and the Seed Terminator.

These two chaff impact mill machines render the weed seed unviable, causing the destruction of over 95 per cent of the weed seed that enters the mills. In 2017 harvest, both the iHSD and Seed Terminator machines were in commercial operation on farms around Australia and both experienced the teething problems that can be expected for new technology moving into the real-world. They have since been in field trials overseas – the Seed Terminator in Canada and the iHSD in France – where both machines completed around 200 hrs work without a hitch.

Kondinin Group Manager of Research and Development, Ben White interviewed 20 growers using either the iHSD or Seed Terminator during the 2017 harvest and reported that their observations suggested both brands were achieving over 95 per cent reduction in seed viability.

“Both types of impact mills ran into the same real-world problems of handling high flow rates of chaff, choking on green crop or weed matter and significant damage to the mills from any sand or soil that is picked up by the harvester,” he said. “Both machines also caused a reduction in harvester capacity of between 12 and 20 per cent in wheat, even though the harvesters had been remapped. This is a significant cost that growers must allow for through machine depreciation and base hourly operating costs, as more hours are needed to harvest the same area of crop.”

Over 70 per cent of the growers that the Kondinin Group engineers visited had remapped their harvesters to improve the harvest capacity.

Operators should note that chaff impact mill technology pulverises the entire chaff fraction, which generates significant levels of dust during the harvest operation. This means that more frequent machine clean-down may be required to minimise fire risk, as well as increased frequency of filter cleaning or replacement.

“Although the problems outlined here are important, they are all likely to be resolved as this technology matures in the commercial world,” said Ben. “There is enormous interest in this method of harvest weed seed control and this will ensure that the problems are solved.”


Seed Terminator, WA.

Australian Herbicide Resistance Initiative’s cost comparison of HWSC methods suggests that the chaff impact mills cost $16-17/ha compared to $22/ha for narrow windrow burning and $6-7/ha for chaff tramlining and chaff lining, depending on crop yield and area. In addition to the weed control benefits achieved through the use of any HWSC method, the chaff impact mill option also reduces crop volunteers.

Research into the efficacy of impact mills is an ongoing process, particularly while the two types of machines are undergoing rapid developmental changes. Recent research by Michael Walsh (AHRI and Sydney University) with help from John Broster at Charles Sturt University (CSU), shows that despite the problems that have been experienced with the new machines, iHSD mills are passing the research tests with flying colours.

Their research concluded that:

  • The iHSD achieved 96–99% destruction of the seeds of 11 weed species when processed in wheat chaff.
  • Weed seed destruction varied by about 10% depending on crop chaff type – ryegrass seed kill was greatest in lupin (98%) > wheat (92%) > canola (90%) > barley (88%).
  • Weed seed kill dropped by about 4% when chaff moisture increased above 12%.
  • Weed seed kill increases with mill speed and 3000 rpm is the accepted optimal speed for the iHSD.

SAGIT funded research conducted by Trengove Consulting in 2017 found similar results for the Seed Terminator:

  • Ryegrass weed seed kill was 93% at 2250 rpm and increased to 98% or greater at normal operating speeds (2500–3000 rpm).
  • Greater than 99% control of several other species including wild radish, brome grass, wild oat, bifora, bedstraw and tares.
  • Increasing chaff flow rate (harvest rate) did not reduce control of these species.
    Samples analysed in 2018 by the Weed Science Research Group, at The University of Adelaide showed that the Seed Terminator could consistently kill 96% of weed seeds when operated at 2750 rpm.

These kill rates refer only to the weed seed that enters the impact mills. To achieve high level of weed control it is essential that all efforts are made to ensure the weed seed enters the front of the header and is then separated and directed into the mills.


iHSD, WA.

Timing, cutting height, operating speed, weed and crop type and harvester set-up all play a part in achieving maximum harvest weed seed control. As is recommended for all HWSC methods that treat the chaff fraction, separation of the chaff and straw through the harvester often requires the addition and fine-tuning of a baffle plate to achieve greater efficiency.

Setting up and operating harvesters to achieve the best weed control outcomes often involves some modification and compromise. By taking the time to get things right, growers usually find that they end up with more grain in the bin and a better sample, making the extra effort worthwhile.

WeedSmart has secured the rights to distribute an electronic version of Kondinin Group’s Research Report: Residue Management at Harvest, which is available in the Resources section of www.weedsmart.org.au. WeedSmart encourages growers and advisors to support Kondinin Group’s independent research through subscription to Farming Ahead.

Related Articles

View all
Article
News

Never cut the herbicide application rate

Scientific studies have demonstrated that resistance can rapidly evolve in weeds subjected to low doses of herbicide. Some weeds can develop resistance within a few generations. Full rates when mixing herbicides too! When mixing herbicides it is important that each product is still applied at the full label rate to ensure high mortality. Applying different chemicals in one mix can provide an additive advantage. It is important to understand the mode of action of each herbicide on the plant when preparing a herbicide mix. This is just as important for pre-emergent grass weed mixes as it is for post-emergent mixes aimed at broadleaf weed control. ALWAYS READ THE LABEL. Surrounding weed seeds with a combination of pre-emergent herbicides with different modes of action can give a high level of control and help extend the useful life of all the chemicals used. The high level of control must be supported with additional control measures for all survivors. All products with different modes of action must be applied at full label rates for this to be an effective strategy.   Mixing two chemicals with the same mode of action can achieve some additional efficacy, however, the mix should deliver the combined full rate to ensure a lethal dose. The amount of stubble present and crop safety are all important considerations when mixing chemicals. For example, when using a tank mix of Avadex® and trifluralin to control ryegrass in wheat, the rates used will vary depending on the sowing system and level of stubble retention. Be sure to get good advice. Many herbicides on the market are a combination of two or more modes of action within the one product. These products must be applied at the full label rate to be effective. Having dual action does not negate the need to change herbicide products and rotate modes of action. Repeated use of any single strategy will reduce the effectiveness of that strategy over time.  
Article
News

Spray well – correct nozzles, adjuvants and water rates

Spray application is a technical field and growers need to make sure their equipment and application techniques are spot-on. The GRDC Spray Application GrowNote provides detailed information and about 80 videos to demonstrate key skills. Prevent spray-drift The focus of spraying herbicide needs to be on doing the job right so the weeds receive the correct dose and die, and this includes reducing the air borne fraction to a bare minimum. Bill Gordon’s 10 Tips for Reducing Spray Drift Choose all products in the tank mix carefully. Understand the product mode of action and coverage requirements. Select (and check) the coarsest spray quality that will provide effective control. Expect that surface temperature inversions will form as sunset approaches and will likely persist overnight and even beyond sunrise on many occasions. DO NOT SPRAY. Use weather forecasts to inform your spray decisions. Only start spraying when the sun is about 20 degrees above the horizon and when the wind speed has been above 4–5 km/hr for more than 20–30 minutes, and clearly blowing away from any adjacent sensitive crops or areas. Set the boom height to achieve a double overlap of the spray patterns. Avoid higher spraying speeds. Leave buffers unsprayed if necessary and come back. Continue to monitor conditions, particularly wind speed, at the site during the spray operation High water rates don’t have to slow you down Some growers are concerned that increasing the water rate when applying herbicide will slow down their spray operation and cost them money. However, the biggest financial loss during spraying usually comes from a failed spray job. To keep your spray operation as time efficient as possible when using more effective and reliable application volumes, you can: Use nurse tanks around the farm to reduce the time spent travelling back to a central re-fill point. Use a larger pump, e.g. 2.5 inch, to make re-filling quicker. Pre-mix the batch while the sprayer is operating. Many mixes can be held in the mixing tank for up to 6 hours. However, wettable granules and suspension concentrates will need agitation to keep them in solution. For pre-emergent herbicides in high stubble situations, carrier volume has a large effect on the level of control achieved. Across four trial sites Dr Borger’s research demonstrated that ryegrass control with trifluralin or Sakura® increased from 53% control when the carrier volume was 30 L/ha to 78% control when the carrier volume was increased to 150 L water/ha in high Water quality and mixing order Water quality is often overlooked as a possible contributor to herbicide failure and can lead to confusion over the herbicide resistance status of weeds on a property. Water should be considered as one of the chemicals in any mix, given that water quality varies markedly depending on its source. Getting the mixing order right is essential for effective spray results. Don’t start mixing until the water quality is right Podcast – Mixing herbicides Adjuvants Sometimes adding an adjuvant is beneficial and sometimes it is detrimental; and there is an art to knowing how to best deploy these additives. When weeds are susceptible to the applied herbicides, the effectiveness of adjuvants generally goes un-noticed. Correctly applied adjuvants can reduce the impact of low level herbicide resistance by helping to maximise the amount of herbicide taken up by the plant.
Article
News

Clean borders – avoid evolving resistance on the fence line

About one-quarter of glyphosate-resistant populations within broadacre cropping situations across Australia come from fencelines and other non-cropping areas of the farm. Along paddock borders, where there is no crop competition, weeds can flourish and, if not controlled, set lots of seed. The traditional approach has been to treat these weeds with glyphosate to keep borders clean but after 20-odd years this option is now failing and paddock borders are becoming a significant source of glyphosate-resistant weed seed. Weed researcher Eric Koetz said the limited options for managing weeds along irrigation infrastructure and other non-crop areas is a problem and is putting additional pressure on knock-down herbicides in irrigated systems. In some situations, cultivation can be used to kill the weeds and provide a firebreak, but on light soils this may pose an erosion risk and mowing or slashing may be safer options. Another possible tactic is to continue using herbicides but to ensure that a clean-up operation is carried out before any survivors can set seed. Some growers are choosing to increase the heat on weeds along the borders by planting the crop right to the fence and then baling the outside lap and spraying with a knockdown herbicide to kill any weeds and provide a firebreak. Another good option in some situations is to maintain a healthy border of vegetation using non-invasive grasses. In Queensland, buffel grass is a good example of a grass that can outcompete other weeds while not invading crop lands. If only herbicides are used on fencelines, resistance is inevitable. Surviving weeds on fencelines have no competition and access to plenty of soil moisture, so they set a lot of seed and resistance can easily flow into neighbouring paddocks. Other resources It’s time for a glyphosate intervention Farm hygiene cottons on – Cleave Rogan, St George What’s new in management of herbicide resistant weeds on fencelines? Keeping the farm clean – Graham Clapham, Norwin Don’t jeopardise glyphosate for clean fencelines Keeping fencelines clean Resistance risk to knock-down herbicides on irrigated cotton farms

Subscribe to the WeedSmart Newsletter