Read time: 5 minutes

What alternatives are there for desiccation and crop topping?

with Paul McIntosh, northern extension agronomist, WeedSmart

Swathing pulse crops is showing promise.

Desiccation and crop topping with pre-harvest herbicide application is a useful way to reduce seed set in late germinating weeds and is an effective harvest aid for cereal grain, pulse and oilseed crops. 

Given the scrutiny that glyphosate is currently receiving Paul McIntosh, WeedSmart’s northern extension agronomist, says it may be a good time to start looking for alternative means of reducing weed seed set prior to harvest and avoiding any potential issues with market access.

WeedSmart’s northern extension agronomist, Paul McIntosh has been investigating alternatives to glyphosate as a desiccant in mungbeans.

“Currently, there are five herbicides registered for late season use in a variety of crops,” he says. “Glyphosate and diquat (or Reglone) are registered for use in wheat and barley in some states, canola, chickpea, lentil, faba bean, field pea, mungbean and soybean. For some of these crops, growers are also able to use paraquat, metsulfuron methyl or saflufenacil (Sharpen).”

Although there are many benefits to the practice from a weed control perspective, there are also market forces at play that could curtail the future use of pre-harvest herbicides.   

“It might be a good time for growers to re-visit some of the non-herbicide options for reducing seed set,” says Paul. “One possibility is to trial swathing in pulse crops like chickpeas, faba beans and mungbeans. Early commercial scale trials suggest that it could be very effective and could also have the additional benefit of hastening crop maturity, bringing harvest forward.”

“In combination with harvest weed seed control, swathing is a valuable WeedSmart Big 6 tactic to manage the weed seed bank,” he says. “Swathing adds another non-herbicide tool to a diverse program, particularly for pulse crops that are often not very competitive, and for weeds that typically shed seed before the crop is ready to direct harvest.”

Are there other herbicide options for crop desiccation if the current products are banned?

In brief: Not really. In most instances, glyphosate is the most effective crop desiccant product.

The details: Glyphosate is already a key component of cropping systems, particularly in no-till systems. In crops like mungbeans that have semi-indeterminant maturity traits that make them want to keep on growing, glyphosate applied at the label rate can give mixed results.

The Australian Mungbean Association recently commissioned weeds researcher Dr Bhagirath Chauhan, QAFFI to investigate the efficacy of a range of possible alternatives to glyphosate as a desiccant, but there were no stand-out herbicide candidates. This small plot trial also included the non-herbicide option of swathing, and the results were very promising.  

Has anyone trialed swathing commercial mungbean crops?

In brief: Yes. A grower on the Darling Downs trialed swathing two mungbean crops in March and April 2020, the first being 0.4 ha within a larger paddock that was desiccated with herbicide, and the second was an 8 ha block.

The details: These two trial paddocks were very successful and the grower was encouraged by the yield and grain quality of the swathed areas. This has generated significant interest from other growers and agronomists in the northern grains region.

The crops were swathed at the standard 90 per cent physiological maturity, the same timing used for chemical desiccation in mungbeans. Harvest was delayed in the 0.4 ha block due to two falls of rain, 12 mm and then 18 mm, which meant the windrows remained in the paddock for 14 days. The crop produced 1.6 t/ha of reasonable quality grain with no evidence of dust.

Picking up the mungbean windrow after a two week delay due to wet weather.

The crop in the 8 ha block was shorter and sparser than the small trial block. Four days after this block was windrowed it was harvested with a Smale pea front at the correct moisture, suggesting that low yielding crops with reduced dry matter could be harvested earlier. The crop yielded just below 1 t/ha of excellent quality grain, with very few pods being left on the ground.

What are the potential benefits and costs of swathing?

In brief: The costs will be very similar to chemical desiccation and there could be extra benefits as the practice is fine-tuned. Swathing and windrowing costs around $35 to $40 per ha, similar to chemical desiccation, but the operation may take more time.

The details: The first benefit is the avoidance of pre-harvest chemical application, removing the potential for desiccant chemical residues in the grain. The second big benefit is that it may be possible to bring harvest forward. Even if swathing is done when the crop is 90 per cent physiologically mature, the same as for chemical desiccation, the crop can be harvested within a few days and could be off the paddock nearly two weeks earlier than a desiccated crop. The clincher is the possibility of swathing before the crop reaches 90 per cent maturity. If this can be done without compromising grain size and quality, it could have very significant benefits for weed control. Many weeds in the northern cropping region set seed before traditional desiccation and harvest time and so if the crop can be cut earlier there is a chance that less weed seed will mature.

Weed seed heads present in the mungbean windrow.

It is early days for the revival of swathing in the northern cropping region and there are many things to be tried and tested. Early successes have also been seen in sorghum, faba beans and chickpeas.

Related Articles

View all
Article
Ask an Expert

How do you manage summer weeds without spraying at night?

Concerns are being raised about the practical implications of this for summer weed control programs. Mary O’Brien, a private consultant with extensive experience in managing spray drift, is keen to see growers fully adopt spray application practices that maximise herbicide efficacy and minimise off-target drift.   Mary O’Brien says the ‘community drift’ that can occur when a number of applicators are each putting a small amount of product in the air at the same time can have very damaging effects on off-target sites. “The bottom line is that allowing spray to drift is like burning money,” she says. “Any product that doesn’t hit the target is wasted and the efficacy of the spray job is reduced, mildly resistant biotypes may survive as a result of low dose application and there is potential damage to sensitive crops and the environment.” “The difficulty is that many growers want to spray at night to cover more ground when conditions are cooler and potentially weeds are less stressed. Having a restriction on night spraying does restrict the time available to cover the areas required.” Having heard these concerns from growers across the country Mary keeps coming back to the fact that if there was a limitation to capacity at planting or at harvest, growers would scale up to get the job done in a timely manner. “Buying another spray rig or employing a contractor is an additional cost, especially after a couple of tough seasons, but I really think this is insignificant against the cost of losing key products and the resultant escalation in herbicide resistance to the remaining herbicides,” says Mary. “This problem is not confined to 2,4-D or even to herbicides. I recently spoke to a stone fruit grower who was forced to dump his whole crop after a positive MRL return for a fungicide he had never even heard of, let alone used.” What about just slowing down and lowering the boom during night spraying? Short answer: This, coupled with a good nozzle, will reduce drift but it will never eliminate it. Longer answer: The correct ground speed and boom height will have a large effect on the amount of product that remains in the air. The problem is that it only takes 1 per cent of the product remaining in the air to cause off-target damage. Once there are a few operators putting just 1 per cent of their product in the air at the same time, the amount of product quickly accumulates and can potentially be very damaging. Mary calls this ‘community drift’. Isn’t it better to spray weeds at night when it’s cooler? Short answer: Not really. Longer answer: Research by Bill Gordon showed that even if you keep everything else the same, night spraying can put at least three times more product in the air than daytime application, even if weather conditions are similar and there is no temperature inversion in place. The main difference between day and night is how the wind is moving across the landscape, rather than the wind speed. Under inversion conditions, the air moves parallel to the ground surface and this means that the product can move significant distances away from the target before coming to the ground. To achieve the best results through daytime spraying, applicators should focus on treating small, actively growing weeds. When there is good soil moisture, weeds are unlikely to be stressed even when the temperature is quite high. Temperature inversion conditions are more common at night and in the early morning. These conditions generate a laminar flow of air across the landscape allowing small droplets to travel many kilometres away from the target site before coming to ground. Can I use other products at night and just avoid using 2,4-D? Short answer: The current changes to 2,4-D labels has drawn a lot of attention but the problem is the same for all crop protection sprays – herbicides, fungicides and insecticides. Longer answer: Different products have different properties and some may work better at night but the problem is the sensitivity of some crops to certain products, such as 2,4-D. All products are tested for their efficacy and the label provides detailed information about the required spray quality and spray application conditions. Many products have explicit label instructions regarding wind speed, temperature inversions (or laminar flow) and night spraying. Given the high risk of drift at night, applicators need to be very confident that there is no inversion present, and weather conditions should be measured at least every 15 minutes to ensure wind speed remains above 11 kilometres per hour. An on-board weather station is the best way to monitor conditions. A visual demonstration using smoke to simulate the the lateral movement of small spray droplets when a temperature inversion is in place. What can I do to improve spray efficacy and avoid spray drift? Short answer: If you do just one thing – change your nozzle. Longer answer: All the factors that increase drift also reduce efficacy. To improve efficacy and reduce drift, use a better nozzle (larger spray quality) and appropriate water rates (matched to spray quality and stubble load), slow down and keep the boom low. Wind is required to push product downward and onto the target, and remember that the 3–15 km/h wind speed is for day time conditions only, this does not apply at night.
Article
Ask an Expert

Testing for herbicide resistance

“Testing takes the guesswork out of the equation and gives farmers baseline information that they can use to monitor changes in the weeds on their farms,” he said. “If low level resistance is identified early there are many more management options available compared to situations where full blown resistance has taken hold.” Dr Boutsalis said the over use and over reliance on particular herbicides will unavoidably lead to herbicide resistance developing. “We often hear of farmers applying herbicide even though they are not sure if it will work,” he said. The $300 to $400 cost of testing is insignificant compared to the cost of wasted herbicide, lost production and the costs of driving down a large seed bank of resistant weeds. What herbicide resistance tests are available to farmers in Australia? Short answer: The ‘quick’ test using the whole plant and the ‘seed’ test. Longer answer: The ‘quick’ test uses plant samples collected on farm and sent to the laboratory. The plants are revived and planted into pots then tested against the required herbicides. The ‘seed’ test requires the collection of ripe seed, which is planted out at the laboratory. After dormancy has been broken and the seedlings have started to grow they are tested for their response to herbicides. Both tests are equally accurate. The ‘quick’ test can not test for resistance to some pre-emergent herbicides, such as trifluralin. Which is the most common test that farmers use? Short answer: The seed test. Longer answer: Collecting seed before or at harvest is the most common method used. The collected seed must be mature, from green to when the seed changes colour. Before harvest collect 30 to 40 ryegrass seedheads or several handfuls of wild oats seed. After harvest it is common to find seedheads still in the paddock or samples of contaminated grain can be sent for analysis. Where is the best place to collect samples? Short answer: From suspicious or high risk areas. Longer answer: Herbicide resistance can develop in high risk areas like fencelines or at random through a paddock. Visual observations and changes on the yield monitor in the header can indicate good places to collect seed. If collecting plant samples, look for weeds at the early tillering stage that appear to have ‘escaped’ previous herbicide treatment. Collect 50 to 100 small plants or fewer larger plants. Shake off the soil from the roots, place in a plastic bag and send to the laboratory. What’s involved in sending samples? Short answer: Pick, pack, register and ship. Longer answer: Each sample needs to arrive at the laboratory with suitable identification and instructions. Register the samples online to get a unique sample number and to provide the information required, such as which herbicides you want to test against. Plant Science Consulting and Charles Sturt University both offer commercial herbicide resistance seed testing. Find the details under Point 4 of the 10 Point Plan on the WeedSmart website.   How to ask a WeedSmart question Ask your questions about the spread of herbicide resistance, or any herbicide resistance management strategy, using this blog or using Twitter @WeedSmartAU.

Subscribe to the WeedSmart Newsletter