Related Articles

Article
Ask an Expert

Can multi-species planting provide effective weed control?

Crop competition is one of the most effective weed control tools available to growers, but some crops simply don’t have a competitive edge.
Dr Andrew Fletcher, a farming systems scientist with CSIRO, says companion planting and intercropping is an option that growers can consider to bolster the competitiveness of an otherwise uncompetitive but valuable crop in the rotation. International research suggests that it can!
Andrew Fletcher, CSIRO farming systems researcher sees potential for multi-species plantings to compete with weeds. Photo: GRDC
“When two or more species are grown together they can occupy ecological niches that might otherwise be taken up by weeds,” he says. “Multi-species plantings have several potential benefits including increased crop yield and improved soil health, but the right combination can also reduce weed biomass by over 50 per cent.”
Multi-species plantings can be quite challenging to integrate into a grain cropping rotation but are more easily used in mixed grain and livestock operations and in intensive pastures for dairy cattle. International research suggests there is a significant untapped opportunity to increase the use of these systems in Australian grain production systems. However, relevant Australian data is scarce and more research is required to understand this untapped potential in Australian systems.    
A mixed-species cover crop can provide multiple soil health benefits, grazing and fodder for livestock and weed control through crop competition and stopping weed seed set.
“Crop competition is a non-herbicide pillar in the WeedSmart Big 6, with the potential to do some serious heavy lifting in terms of weed control,” says Andrew. “Intercropping and companion planting offers a means to bolster the competitiveness of some crops and to keep them in the rotation without risking a weed blow-out.”
What is intercropping, companion planting and mixed-species planting?
In brief: These systems all involve planting two or more crop species together. The combinations are almost limitless.
The details: Intercropping involves planting two or more species together and harvesting the grain of multiple crops. This generally relies on the grain species having different size seed and compatible harvest times.
Companion planting involves two or more species planted together with the intention to harvest grain from one species only after grazing or terminating the other species before seed set.
Sowing a low-growing species like clover between the rows of cereal can compete with weeds in the inter-row area, fix nitrogen and provide the basis of a pasture after the cereal grain is harvested. This is one example of companion planting.
Mixed-species planting is used to describe plantings of several species grown together primarily for the soil health benefits, and that may have potential for grazing and or forage conservation.
How do these systems suppress weed growth?
In brief: These multi-species systems are designed to take up the ecological space that might otherwise present and opportunity for weeds to fill.
The details: Intercropping and companion planting provide additional weed control in situations where one of the species is a relatively poor competitor as a sole crop. By maximising competition, weed growth is suppressed by up to 58 per cent compared to the least competitive species grown on its own. If a competitive crop such as barley is sown in the most competitive configuration possible, there is little additional benefit from adding a second species.
The downside of using this multi-species strategy for weed control is that in-crop herbicide options the choice of herbicides is limited. This is mainly due to the common combinations being a grass crop with a legume or brassica, meaning grass and broadleaf herbicide options can’t be used, except for when one species is terminated. This needs to be factored into decisions around intercropping and companion cropping.  
What are the best-bet combinations for enhanced weed control?
In brief: It depends on the farming system and the other reasons for considering a multi-species planting.
The details: If the aim is to produce grain, the species selected should have easily separated seed. A well-known example is peaola (field pea plus canola). A recent review of historical trials showed that the median yield increase was 31 per cent compared to sole crops of peas and canola, but the weed control effects of peaola in Australia are unquantified.
An effective companion planting combination is wheat undersown with tillage radish and a legume. The broadleaf companions are sprayed out at stem elongation, leaving the cereal to mature through to harvest.
If there is livestock in the farming system, dual purpose combinations such as grazing canola plus vetch and oats can provide excellent weed suppression. This mix could be grazed and then terminated as hay or silage at stem elongation.
Multi-species plantings add a layer of complexity to the farming system, but many growers have taken on the challenge and are reaping the rewards in crop yield, soil health and weed suppression.

Article
News

Investigate adverse experiences when using herbicides

A shuttle of glyphosate applied over the top of a Roundup Ready cotton crop was recently shown to also contain a damaging level of 2,4-D impurity, resulting in significant crop injury and yield loss.
The grower involved did not accept the suggestion that the crop damage was due to poor sprayer decontamination or spray drift from a fallow application of 2,4-D, and he was able to prove the problem was due to product impurity.
2,4-D herbicide injury in cotton after the crop was sprayed with glyphosate product contaminated with 2,4-D.
Other shuttles of the same batch may have been applied to fallow weeds where the residual 2,4-D in the glyphosate would have gone unnoticed. Full rate 2,4-D in glyphosate is known to compromise glyphosate efficacy, but studies of low-rate 2,4-D impurity in glyphosate could not be found.
Where can impurities come from?
While the agricultural chemical manufacture and supply chain in Australia is considered first-class and is highly regulated, there is an acceptance that the nil-impurity requirement for the manufacture of agricultural chemicals is unattainable in facilities that use multi-purpose equipment for synthesis, formulation and packaging of products.
Companies therefore apply their own quality assurance standards before releasing products for distribution and sale. If the level of risk posed by certain residual impurities in a product is underestimated, there is potential for instances of crop injury, pesticide residue in produce or poor performance of the product on the intended target weed, fungus or pest.
Mistakes can and do happen within the manufacturing process and chemical supply and distribution chain. To ensure that risks of contamination are minimised and that quality assurance protocols are followed carefully, it is important that any breaches or errors are identified quickly, reported and investigated.
Keep good records of each spray event, including batch numbers of applied product, to help identify the cause of adverse experiences with herbicides.
There are two important things to note: firstly, the current regulations specify that crop protection products must contain nil impurities (other than manufacturing impurities listed in the APVMA standard); and secondly, companies are required to recall product batches when contamination issues are identified. The Australian Pesticide and Veterinary Medicines Authority (APVMA) oversees a highly regulated system of registration, compliance and enforcement on crop protection products.
Assess potential application issues
When misapplication (wrong product applied, incorrect mixing, contaminated product etc) occurs, symptoms of affected plants are usually uniform throughout the treated area. It is often suggested that poor application technique or poor sprayer decontamination is the reason for crop injury or poor weed control results – suggesting a grower ‘own-goal’. Such potential errors must be considered, but if best practice spray techniques and spray rig decontamination procedures have been followed, product impurity should also be considered and investigated.
The chemistry of the product will determine the risk of residues being held within the tank and spray lines of the application rig. This is why there are differences in the sprayer hygiene requirements after using particular products.
Most modern spray rigs have impervious rubber and plastic, or stainless steel components, drastically reducing the risk of chemical absorption and subsequent extraction. Residues on the rubber surfaces are the main concern, and all registered cleaners will physically remove residues when used as directed, but cracked rubber components can present a contamination risk. All filters/strainers must be cleaned and all actuators and taps musts be cycled as the cleaner is run through the spray boom and tank loading system, agitators and tank.
Crop injury or poor weed control that is associated with just one sprayer tank load would suggest sprayer contamination. Effects from contaminated tanks are usually worse at the beginning of the spray run, with damage diminishing with spraying and tank reloading. The field pattern can provide clues to the sprayer filling routine in the field where the crop damage occurred.
The other major reason commonly cited for crop injury in spray drift. Although there is always some small amount of drift when agricultural chemicals are sprayed from a ground rig, the amount is down to ‘virtually safe’ levels within a few tens of metres. If the conditions are very windy, or the boom is too high, or the droplet size too small, spray could drift a few hundred metres from the application ground rig.
Spray droplets may travel a few feet to several kilometres from the targeted area, depending on weather conditions and spray application; but the potential for drift damage decreases with distance because droplets are deposited or become diluted in the atmosphere. The pattern of injury is normally seen most prominently on the section of the field closest to the sprayer that generated the spray drift, and decreases across the field.
During inversion conditions, a similar amount of product is subject to drift, but the drifting product will not dilute as much in the air, so concentrations at specific locations can be higher than expected in non-inversion conditions.
What to do if your crop is damaged or weeds don’t die as expected?
Along with several other possible causes, unintended application of contaminated product should be considered as a potential explanation for crop injury or poor weed control.
Keep in mind that if product impurity is the problem, it is most likely due to a low-dose effect that may be difficult to diagnose or may take longer to express in the target weeds or susceptible crops.
Finding the cause of an ‘adverse experience’ with herbicide is one of the most important reasons to keep accurate and detailed spray records.
If a problem occurs:

Take detailed, time-stamped photographs of the crop or weeds and record everything you know about the crop or fallow management, weather conditions in the weeks prior to the damage being seen, spray history of the field etc. If possible, geotag the photos so they can be easily associated with the correct field.
Record the relevant batch numbers of the chemicals used, which can be checked against the retention samples at the factory if necessary. Collect samples from drums of product used prior to the injury being observed (up to 14 days prior to symptoms being obvious). When you take samples, make sure there are witnesses who can vouch for the voracity of the evidence you have collected. Testing for one impurity (e.g. 2,4-D in glyphosate) costs less than $500 per sample.
Document the injury over time. For example, injury in cotton from low rates of 2,4-D will grow out in two weeks, but injury from higher rates, could last three to four weeks and are the most likely to result in yield loss. Similarly with weeds although the impact may be more difficult to document.
Mark out the affected area in the field to help assess crop yield loss at the end of the season. Note the pattern and intensity of the problem across the field.
Eliminate as many possible causes as you can. Re-assess the application technique and equipment, consider the pattern of damage in the field, look at the weather conditions for the relevant period of time and so on.
Test for herbicide resistance in weeds.
Report the crop damage or poor weed control. The APVMA administers the Adverse Experience Reporting Program, which allows anyone to report a problem with an agricultural chemical, including crop and plant damage, for example, plant death, severe stunting or significant yield loss. This is also the way to report poor weed control outcomes.

The APVMA acknowledges there is likely under-reporting of adverse experiences. The magnitude of under-reporting is unknown and provides limitations in quantifying product risk.
Investigations of spray drift are conducted by the relevant state government body, for example: NSW EPA (call Environment Line: 131-555), Biosecurity Queensland (call 132-523) and Chemical Standards Officer (Victoria) (call 03 5430 4463). Industry organisations will also support growers impacted by chemical damage to crops.
If the damage is due to factors other than spray drift, the affected party will need to take legal action and seek compensation themselves.
Related resources
Is poor weed control due to herbicide resistance?

Article
Ask an Expert

What can I do at harvest to reduce my future weed burden?

As crops mature and harvesters begin reaping, consider the potential fate of seeds ripening on weeds that escaped in-crop control measures.
Peter Newman, WeedSmart’s western extension agronomist, says harvest time is an important opportunity to assess weed burden across the farm and be proactive about driving down the weed seed bank.
“Harvest can either be a super-spreader or a weed suppressing event,” he says. “Small patches of weeds can quickly expand when seed is blown out the back of the harvester. On the other hand, the harvester can be a powerful weed management tool if any one of the harvest weed seed control options are implemented.”
WeedSmart’s western extension agronomist, Peter Newman says efforts made to reduce the spread of weed seed at harvest will soon pay off for growers.
Australian growers have led the world in inventing and adopting harvest weed seed control tools such as impact mills, chaff carts, chaff decks and chaff lining, all of which can reliably destroy over 90 per cent of the weed seed that enters the front of the harvester.    
“In addition to harvest weed seed control there are several other actions in the WeedSmart Big 6 that growers can implement just prior to, during and immediately after harvest that will make a measurable difference to the weed burden in future growing seasons,” says Peter. “The WeedSmart Big 6 tactics are scientifically-proven to reduce the risk of herbicide resistance through diverse herbicide use and cultural control to prevent weed seed set.”
What can I do before harvest to manage late emerged weeds?
In brief: Scout for and map weedy patches. Consider sacrificing small areas of high density weeds. Swathing can be a very effective way to stop seed set of late emerged or resistant weeds. Collect weed seeds for herbicide susceptibility testing.
The details: Growers across Australia use a variety of methods to map weeds – from the simple to the sublime. ‘Dropping a pin’ using the tractor’s GPS mapping system as you travel through a weedy section when spraying or harvesting is easy and provides useful information about the distribution of weeds in the paddock. Many growers have their own drones and use them the collect images or video footage of the crop that can be viewed or analysed to identify high density weed patches.
Collect seed for herbicide susceptibility testing – knowing what still works is vital information for planning next season’s herbicide program. There are three herbicide testing facilities in Australia that are equipped to test weed seed samples – Plant Science Consulting, CSU Herbicide Resistance Testing and UWA Herbicide Resistance Testing.
Collecting weed seed before or at harvest is the most common method used. The collected seed must be mature, from green to when the seed changes colour. Before harvest, collect 30 to 40 ryegrass seedheads or several handfuls of wild oats seed. After harvest, it is common to find seedheads still in the paddock or samples of contaminated grain can be sent for analysis.
Keep samples from different locations separate and details noted on the bag. Only use paper bags (double layer) to collect and send seed samples. Ensure bags are sealed so that the samples don’t mix during transit.
Which harvest weed seed control tool is best for my situation?
In brief: There are six harvest weed seed control tools used in Australia – impact mills, chaff decks, chaff lining, chaff carts, bale direct and narrow windrow burning. Choose the one that best suits your system and budget.
The details: Impact mills are best suited to continuous cropping situations. Residues are retained and evenly spread. Chaff decks have lower capital cost and are well-suited to controlled traffic situations. Chaff carts are popular with grain producers who also run livestock. Bale direct is also expensive but has a good fit in locations where there is access to straw markets. Chaff lining is currently the best ‘entry level’ system and can be used in CTF or non-CTF systems, with best results where the harvester runs on the same track each year. Chaff lining has essentially superseded narrow windrow burning, overcoming the time required and risks involved in burning and reducing the loss of nutrients from the system.
If you haven’t used harvest weed seed control tools before, it doesn’t take long to build and fit a chaff lining chute ready for use this harvest season.
What should I be ready to do straight after harvest?
In brief: Spraying weeds immediately after harvest is fairly common practice. Weeds present may be close to maturity or fresh germinations of summer-active weed species.
The details: Some growers get in early with knockdown herbicide applied under the cutter bar when swathing barley or canola. Consider using the double knock strategy, heavy grazing pressure and possibly a soil residual herbicide that is compatible with your planned crop rotation. Pay particular attention to any weedy patches identified before or during harvest. Stopping seed set at every opportunity is the crux of an effective weed management program.
Give some thought to what might be the underlying cause of weedy patches – fixing problems such as pH and soil nutrition imbalances, waterlogging and spray practices that routinely deliver low doses of herbicide.

Article
News

Chaff carts were made for feeding livestock

Chaff carts were invented in Canada in the 1970s as a fodder collection system, so they have always had an association with livestock. In the late 1980s they were introduced to Australia and used as one of the first harvest weed seed control (HWSC) tools to manage herbicide resistant ryegrass and wild radish in Western Australia.
Depending on the grower’s situation, chaff heaps in Australia have been burned, grazed then burned, sold as loose chaff for horse feed, grazed or knocked down then seeded through (unburned) and most recently, baled and used on-farm as conserved fodder.
Different model chaff carts incorporate more or less straw with the chaff, which can affect the feed value of the bales.
This latest method fits very well with the move to confinement feeding of sheep and brings the use of the chaff cart almost full circle. Given the long-standing association with fodder conservation, the value of the chaff as a feed source is well known, particularly for sheep.
A HWSC Calculator developed by WeedSmart western extension agronomist Peter Newman, now enables growers to quickly estimate the potential value of baling chaff from chaff heaps and feeding it out in on-farm confinement areas. Upper Eyre Peninsula mixed farmer, Bruce Heddle, instigated the addition of the new feature to the calculator and provided the energy figures from his own testing of different chaff types. Planfarm livestock consultant, Paul Omodei, worked with Peter to make sure the calculator took into account the important considerations for livestock production.
Although there is variability in feed value results, ballpark energy figures are in the order of 6.7 MJ/kg DM for wheat chaff, 7.7 MJ/kg DM for barley chaff, and 8 MJ/kg DM for canola and pulse chaff. Peter says the cost to deliver baled barley chaff to an on-farm feedlot is around 1.5 c/MJ compared to barley grain for 2.3 c/MJ, based on these feed values that Bruce Heddle provided.
“Chaff carts incorporate more or less straw with the chaff depending on the cart model, and while some extra straw makes baling and handling easier, it also reduces the feed value slightly, so that needs to be factored in,” he says. “Some growers are already set-up for hay making while others might choose to employ a contractor.”
Bruce has a contractor to bale their wheat, barley, canola and lentil chaff dumps, and feeds the bales along with barley grain and a lick feeder to sheep held in confinement from January to the end of seeding. All the chaff is beneficial although the canola and lentil chaff has the highest feed value.
Bruce says having the sheep confined during this period reduces their workload as the sheep are easy to look after and feeding out is only needed once a week. They are able to easily monitor the flock and attend to any problems quickly, and don’t have to spend time moving sheep around during seeding.
The pastures also benefit from a spell from grazing for these months, so the sheep are turned out into refreshed pasture after their confinement.
Jarred Tilley is another mixed farmer who has been making chaff bales for use in their family’s sheep enterprise at Kapunda in South Australia for the last two years. Jarred has been fencing off less productive areas on their farms and using them as confinement yards for their sheep in May and June. Their high density baler creates large bales that weigh 500 to 550 kg each from chaff dumps that are knocked down using a telehandler and then raked to save time when baling. Having their own hay-making equipment helps justify the chaff baling operation.
“We have fed 500 ewes in an 8 hectare paddock for six weeks with a diet of chaff bales, regular hay and a lick feeder,” he says. “The benefits are probably marginal for us using wheat chaff, but the canola and pulse chaff is a better feed supplement. The feed quality of the chaff is not always as good as we would like.”
Jarred says that the sheep spread the chaff out in the confinement paddocks and often leave more ground cover in those paddocks than when the sheep went in.
Chaff is a low-cost feed that is only sufficient for maintenance energy levels for sheep. Other feeds need to be included in the feed ration to promote growth or support lactation. Studies that Ed Riggall at AgPro Management conducted at multiple sites in Western Australia over three years demonstrated that sheep with access to chaff heaps from various crops gained an average of 2 kg in the first three weeks. This was 500 g more than sheep grazing stubbles where the chaff was spread out by the harvester.
Livestock containment paddocks boost productivity while stopping the spread of herbicide resistant weed seeds.
At the end of six weeks grazing the sheep with access to chaff piles had gained about 100 g, while sheep without access to the chaff piles had lost almost 2 kg compared to their starting weight. Additional benefits might be expected in a confinement feeding situation where the chaff is easier to forage and is potentially available to the stock for longer as part of a mixed ration.
By making use of the chaff within their own operations these growers are gaining benefit from a resource that is otherwise wasted, and avoid the risks associated with burning chaff heaps.
All harvest weed seed control methods provide similar levels of weed control – collecting, concentrating or destroying over 90 per cent of the weed seed that enters the front of a well set-up harvester. Australian farmers are spoiled for choice when it comes to the options for collecting and destroying weed seed at harvest and keeping downward pressure on herbicide resistance. The WeedSmart HWSC Calculator tool allows growers and agronomists to test different scenarios using their own figures to estimate the costs and benefits of the different systems available.
More information

Download the HSWC costs calculator
More lambs, less weeds in confinement systems
Sheep can turn weed seeds and chaff into cash
Ben & Emily Webb case study

Article
News

Throwing a wide net over mobile weeds

These weeds are now the subject of a pilot ‘area-wide management’ project to trial cooperative and cost-effective methods to reduce the movement of these weeds and the herbicide resistance traits they have evolved.
The cross-industry project has Australian government funding to target weeds that are a common problem to all industries in an area and have ‘mobile’ seed and pollen – that is, they spread easily. Weed species that fit the criterion include flaxleaf fleabane, feathertop Rhodes grass and annual ryegrass.
In three distinct regions – in the Darling Downs region of Queensland, the Riverina region of NSW and the Sunraysia region of Victoria – project teams are devising and implementing area-wide management programs to tackle target weeds of concern in their region.
The University of Adelaide is providing targeted herbicide resistance testing within the pilot areas and mapping the spread of weeds, based on genetic testing conducted at the University of Queensland.
Dr Rick Llewellyn, senior principal research scientist (agricultural systems) with CSIRO is leading the ‘Area wide management for cropping systems weeds’ project to better understand the importance of weed mobility, and test the opportunities for this collaborative approach. He says the idea is to draw together industries and land managers to ‘find a collaborative solution to a common problem’ where a strong value proposition can be established.
Dr Rick Llewellyn, CSIRO, says more coordinated awareness and information sharing can channel effort and innovation into weed management improvements that benefit both the individual land manager as well as the district.
“Area-wide management has been very effective in the management of invasive animal pests and for some mobile insect pests,” says Rick. “We know that some weeds are particularly good at moving across the landscape, either as contaminants or borne on the wind or in flood water – and most farmers have experienced a weed incursion from a source beyond their farm boundary. We are testing collaborative and cost-effective ways to reduce the spread of cropping weeds across diverse farming landscapes.”
Each of the three pilot areas have identified the highest priority mobile weeds to target in their initial on-ground project. In the Sunraysia region the Mallee Sustainable Farming and horticulture organisations have partnered to develop strategies that minimise spray drift while also providing effective control of important weeds like fleabane. Dr Chris Preston, The University of Adelaide, is assisting the Sunraysia project team as they investigate application techniques and product choice for summer weed control in this diverse cropping region.
“Where a range of different crops are grown in close proximity there is a risk of damage through off-site movement of herbicides. To reduce this risk, growers using some products, such as phenoxy herbicides, must work within narrow application windows; but to prevent large populations of weeds setting mobile seeds, growers need cost-effective herbicide options,” says Rick. “The area-wide management trials led by Mallee Sustainable Farming compared weed fallow control efficacy of six alternative products registered for use in optical sprayers, as well as options for better control of mobile and resistance-prone weeds like sow thistle in horticulture.”
The area-wide management trials led by Mallee Sustainable Farming compared weed control efficacy of six alternative products registered for use in optical sprayers, as well as options for better control of mobile and resistance-prone weeds like sow thistle in horticulture. Photo: Frontier Farming Systems.
In the Riverina’s Murrumbidgee Irrigation Area, the focus of the area-wide trials led by the local Irrigation Research and Extension Committee (IREC) is to reduce the movement of weed seed within the irrigation scheme through better management of channel bank vegetation.
Establishment of weed-suppressive grassed channel banks is being tested to assess its feasibility as a weed management strategy that could bring benefits to the many industries that utilise the irrigation scheme. The area-wide activities in the Riverina also attracted extra support from the wine industry with additional trials established to prevent seed set of mobile weeds in vineyards.
The Darling Downs pilot is addressing the management of drainage line and roadside vegetation, particularly where farmers are aiming to maintain weed-free fallows. The project also included the demonstration of new innovations, such as the mechanical weed chipper for control of glyphosate resistant weeds in fallows. The focus weeds in this project are fleabane and feathertop Rhodes grass, both of which can be difficult to control with knockdown herbicides such as glyphosate.
The Darling Downs area-wide weed management project is focused on the management of road-side vegetation, particularly alongside cropping paddocks.
“In each of the pilot areas we have conducted herbicide resistance testing to build a picture of the extent and pattern of resistance across the landscape, on public lands, orchards, vineyards, and on grain and cotton farms,” says Rick. “We have also used genetic testing to map related populations to determine where weeds have come from. For example, we are interested in whether the weeds in the cropping paddocks are related to those found on adjacent roadsides, or did they originate from a distant site.”
Initial findings suggest that there is not usually evidence of ‘resistance fronts’ moving across a district, but rather resistant weed outbreaks are usually scattered. This points to the importance of localised ‘neighbourly’ action to reduce the overall cost of weeds, in addition to broader regional approaches to prevent the introduction and spread of problem weeds.
The WeedSmart Big 6 tactics can be applied to area-wide management as well as within a cropping enterprise to tackle resistance through strategic patch management and diverse control methods that result in low weed densities and prevent seed set of mobile weeds.
Rick says more coordinated awareness and information sharing can channel effort and innovation into weed management improvements that benefit the individual land manager as well as the district.
“There has been an increase in the diversity of food production industries in many districts over recent decades, so there’s more and more opportunity for a collaborative approach to reduce weed costs and risks as ‘new neighbours’ become established in many dryland grain growing areas,” he says.
Research and development partners involved with the project include Grains Research and Development Corporation, Cotton Research and Development Corporation, AgriFutures Australia, CSIRO, University of Queensland, University of Adelaide, University of Wollongong, Mallee Sustainable Farming, Millmerran Landcare Group, Irrigation Research & Extension Committee Inc, together with Wine Australia, the Toowoomba Regional Council and a range of additional local industry organisations.
This project is supported through funding from the Australian Government Department of Agriculture as part of its Rural R&D for Profit program and the Grains Research and Development Corporation and the Cotton Research and Development Corporation.
More resources

Area wide management of weeds project updates
Social attitudes to area-wide management – Preliminary report, Darling Downs

Article
News

Advances made in weed recognition technologies

Just as Australia led the way with the development and adoption of ‘green-on-brown’ weed detection and spot spraying in fallow situations, now Australian researchers are developing technologies that will deliver ‘green-on-green’ weed recognition and targeted control in-crop.
Imagine a machine that can identify one weed species from another and apply the best treatment to each weed, even in-crop. While expert human brains can make these differentiations and decisions relatively easily, training artificial intelligence technologies to do the same thing is challenging.
With investment from GRDC, a team of researchers led by Dr Michael Walsh, director weed research at the University of Sydney, have recently completed the pilot phase of crucial work that will underpin future developments for machine learning in weed recognition.
Dr Michael Walsh, director weed research at the University of Sydney, says the WeedAI image database will underpin future developments for machine learning in weed recognition.
Dr Walsh says there are several commercial interests developing machine learning technologies for site-specific weed control in Australia, but they all need access to a collection of relevant images to essentially ‘train’ computers in the development of weed recognition algorithms that can differentiate between crop and weed plants.
“We have set out to establish protocols for collecting and annotating images that will be stored in an open-source database that anyone with commercial or academic interests can contribute to and also use for future developments in this technology,” he says. “The pilot project has centred on collecting images and developing weed recognition algorithms to detect representative grass and weed species in wheat and chickpea crops.”
The WeedAI database currently contains thousands of images of annual ryegrass and turnip weed growing in chickpea and wheat crops. These images have been manually annotated and used to develop and test weed recognition algorithms for their accuracy in correctly identifying weeds growing in-crop.
“The images are all high quality, with annotation outlining the weed shown in the image and notes about the agricultural context, such as soil colour, location, crop type, and growth stages of the crop and or weed,” he says. “We are hoping to fast-track developments and take advantage of the machine learning technologies that have capability to accurately recognise and locate in-crop weeds to ultimately provide growers with the opportunity to specifically target these weeds with a range of weed control options.”
Machine learning offers the potential for high-level accuracy in weed recognition in-crop.
“We are hopeful that this will give growers access to a range of novel chemical and non-chemical weed control technologies that will add to the existing options available for in-crop weed control. This might include herbicides that are currently too expensive for blanket spray application.”
Dr Walsh says Australia is leading the way in developing weed recognition technologies for grain production systems and he believes the open-source database will reduce replication of effort and encourage technology companies to address more challenging scenarios, such as recognition of grass weeds in cereal crops.
Like the optical spray technology that brought tractor-mounted spot spraying to fallow management over 20 years ago, the green-on-green in-crop weed recognition systems in-crop will be used for site-specific weed control in situations where weed density is already quite low.
“At densities of less than one weed per 10 square metres, the area sprayed with herbicides would be 70 to 80 per cent less than when a blanket spray is applied,” says Dr Walsh. “The opportunities to introduce different herbicide modes of action or alternate methods of weed control such as targeted tillage or laser treatment can also be considered to reduce the risk of herbicide resistance.”
Ground speed is the enemy of real-time weed recognition systems, as accuracy increases considerably with speeds slower than those currently used for blanket spraying. With increasing computing processing speeds the expectation is that in-crop weed recognition systems will be accurate at 10 to 15 km/h. The introduction of autonomous platforms is reducing the need for higher speeds, and with a light source there will be the opportunity for round-the-clock operation of weed recognition equipped site-specific weed control systems.
A number of commercial companies are bringing in-crop spot spraying to market and will be on-hand at WeedSmart Week, Esperance to showcase their technology in mid-August. Ben White, Kondinin Group’s research manager will host the machinery session with spray and harvesting gear on display including Goldacres’ G6 Crop Cruiser series 2, weed detection technologies using drones, weed identifying cameras (green on green) and a range of harvest weed seed control options including impact mills from Seed Terminator, Redekop and iHSD (both hydraulic and belt-driven) and the Emar chaff deck. This flagship event always attracts growers keen to see how other farmers are keeping weed numbers low in different systems. Early bird registration is now open.
More resources

WeedSmart podcast – Farmers can now help improve green-on-green technology
Browse the Weed-AI image database
Video of Weed-AI workshop presentations (Day 1)
Video of Weed-AI workshop presentations (Day 2)

Article
News

Kicking the herbicide habit

The single cause of herbicide resistance in weeds is selection pressure through herbicide use.
Annual ryegrass leads the charge, with resistance to multiple herbicide modes of action, and demands a readjustment in weed control strategies.
Dr Peter Boutsalis of Plant Science Consulting said that the introduction of several new herbicides over recent years has provided options for controlling some resistant populations, particularly for Group 1 [A] and Group 2 [B] resistant ryegrass, but this alone will not halt resistance evolution in ryegrass populations across Australia.
“Simply changing to another mode of action when older chemistry seems less effective is not a long-term solution. Any herbicide has the ability to select for resistance, especially in a genetically diverse species such as ryegrass,” he said. “The strategy needs to centre on increasing diversity in herbicides and non-herbicide tools, not just switching from an ‘old’ herbicide to a ‘new’ one.”
In 2020, Dr Peter Boutsalis, Plant Science Consulting, was sent 83 ryegrass samples from concerned growers in NSW and the Quick Test showed 79% of individual plants that survived paddock treatments were in fact resistant to glyphosate.
The Grains Research and Development Corporation has invested in random weed surveys in different regions within New South Wales each year from 2015 to 2019. These surveys have identified differences in the pattern of resistance between regions and other states but the trend toward multiple resistance mechanisms and resistance to increasing application rates is undeniable.
Dr John Broster, Charles Sturt University said the majority of annual ryegrass populations in NSW are resistant to Group 1 [A] ‘fop’ and Group 2 [B] herbicides with some variability between the surveyed sub-regions.
The random surveys conducted in NSW from 2015 to 2019 involved the collection and testing of 608 ryegrass populations by researchers from Charles Sturt University.
To date, no populations have been found that are resistant to the newer pre-emergent herbicides, however resistance has been reported in other states.
“Of particular concern is the percentage of ryegrass populations sampled in the random survey in some sub-regions that are resistant to glyphosate,” he said. “The extent of resistance in some areas was brought home strongly in the 2020 season when many growers were confronted with significant patches of ryegrass that clearly escaped pre-seeding glyphosate applications.”
The random surveys conducted in NSW from 2015 to 2019 involved the collection and testing of 608 ryegrass populations, with the results showing 5% of these populations were resistant to glyphosate. The highest level of resistance so far was found in the 2019 results from the eastern NSW region alone, where 14% of populations were resistant to glyphosate. A population is considered resistant to a herbicide when more than 20% of the plants grown from seed collected at a single site survive applications of registered rates of the herbicide in question.
In addition to the random sampling to provide the ‘big picture’ of resistance extent, Dr Boutsalis also conducts Quick Tests when growers and agronomists experience an apparent herbicide failure. In 2020, he was sent 83 ryegrass samples from concerned growers in NSW and the Quick Test showed 79% of individual plants that survived paddock treatments were in fact resistant to glyphosate.
“This suggested that although glyphosate resistance is generally a significant contributing factor to weeds ‘escaping’ herbicide treatment in the paddock, there are potentially other forces involved as well,” said Dr Boutsalis. “Poor application technique or application onto stressed plants, incorrect timing, sampling plants that were not exposed to glyphosate, antagonistic tank mixes, inferior glyphosate formulation, poor water quality, incorrect adjuvants, or a combination of these can also result in poor weed control in the field.”
“To keep any herbicide as a long-term option it is essential that high quality products are applied correctly and that survivor plants are prevented from setting seed,” he said. “Switching products is a very short term and inadequate solution. A better strategy is to implement a diverse program of both herbicide and non-herbicide tactics and be diligent about keeping weed numbers low.”
Other than confirming resistance, herbicide testing is a powerful way to identify modes of action that a resistant population is still susceptible to. Growers who are confronted with patches of ‘survivor’ weeds this season can send live plant samples in for the Quick Test to identify herbicide options that could be used to prevent seed set in the current season. If the escapes are not seen until seed has set, seed can be collected and sent to either CSU or Plant Science Consulting for testing against a wider range of herbicides, including pre-emergent herbicides.
Testing of ‘suspect’ seed samples sent to CSU last year resulted in 30% of populations testing positive to glyphosate resistance.
Back row = glyphosate resistant biotype, Front row = susceptibleLeft to right is 1.5 L/ha, 3 L/ha, 4 L/ha Glyphosate 540.
Patch management strategies such as cutting for hay, spraying out with paraquat, or chipping can be very effective in containing a potential blow-out. The WeedSmart Big 6 strategies for integrated weed management can then be implemented to apply long-term downward pressure on weed numbers.
The WeedSmart Big 6 tactics will be the centre of discussion at WeedSmart Week in Esperance, WA in August this year. This flagship event always attracts growers from interstate keen to see how other farmers are keeping weed numbers low in different systems. Early bird registration is now open.
Resources

Causes of poor ryegrass results and paraquat and glyphosate resistance 2020 season
Resistance and susceptibility testing

 

Article
News

Don’t sow wild oats

Ranked as the third most costly weed in Australian grain cropping, three weedy Avena spp. – wild oat, sterile oat and slender oat – are estimated to infest over two million hectares, causing crop yield losses of 114,596 t and a national revenue loss of $28.1 million.
In the southern and western regions, the main species found is wild oats (A. fatua), while in the northern region, sterile oat (A. sterilis ssp. ludoviciana) is the more problematic species. Both have evolved resistance to multiple herbicide groups in Australia.

QAAFI weed researchers Gulshan Mahajan and Bhagirath Chauhan have recently published a series of papers on their weed ecology studies of Avena spp., providing growers and agronomists with more information to use when formulating integrated management plans for these weeds in crops.
Practical tips

Both wild oat and sterile oat can survive in soil moisture conditions of 60 per cent water holding capacity (WHC). Sterile oat even produced seed at 40 per cent WHC.
Seedlings of these weeds can emerge from a depth of 10 cm, but greater emergence occurred from 2 and 5 cm depths. Emergence commenced at the start of winter (May) and continued until spring (October).
Early emergence plants produce the most seed, but later emergence plants can still produce enough seed to support reinfestation.
In a no-till system there is low persistence of seed on the soil surface. A 2-year assault on the weed seed bank can result in complete control of infestations.
Weed density of 15 wild oat and 16 sterile oat plants/m2 resulted in a 50 per cent reduction in wheat yield. Lower weed density (just 3 plants/m2) can still support reinfestation.
Sterile oat is a better candidate than wild oat for harvest weed seed control (HWSC).
Wild oat is best managed through early weed control (pre and post sowing) and strong crop competition.
An integrated approach to weed management can reduce Avena weed biomass by up to 90 per cent.

Experimental design features
We are summarising the finding from four related research papers:

Biological traits of six sterile oat biotypes in response to planting time. https://doi.org/10.1002/agj2.20507
Influence of soil moisture levels on the growth and reproductive behaviour of Avena fatua and Avena ludoviciana. https://doi.org/10.1371/journal.pone.0234648
Seed longevity and seedling emergence behaviour of wild oat (Avena fatua) and sterile oat (Avena sterilis ludoviciana) in response to burial depth in eastern Australia. https://doi.org/10.1017/wsc.2021.7
Interference of wild oats (Avena fatua) and sterile oats (Avena sterilis ludoviciana) in wheat. https://doi.org/10.1017/wsc.2021.25

Detailed findings
Sterile oats growth and seed production for early and late emergence cohorts
Six biotypes of sterile oats were collected from sites in southern Qld and northern NSW and planted in field conditions at the Gatton research farm in the winter cropping seasons of 2018 and 2019. The weed seed was sown early, mid and late season and the growth and reproductive potential of the six biotypes was monitored.
Averaged across the biotypes, the early planted weeds produced 2660 seeds/plant. Weeds sow mid-season produced 21 per cent less seed and the late-season weeds produced 84 per cent less seed than the early-season plants.
Although seed production was more prolific from the early and mid season plants, the late season plants produced sufficient seed to support reinfestation the following season.
A clean seed bed and competitive crop environment is the best strategy to suppress sterile oat seed production.

Effect of moisture stress on biomass and seed production of wild oats and sterile oats
Seeds of wild oat and sterile oat used in this study were collected from Warialda, NSW, in October 2017 and multiplied at the University of Queensland, Gatton Research Farm in the winter season of 2018. The pot trial to investigate the effect of 20, 40, 60, 80 and 100 per cent water holding capacity (WHC) on these two Avena weed species was conducted in 2019.
Results revealed that wild oat did not survive, and failed to produce seeds, at 20 and 40 per cent WHC. However, sterile oat survived at 40 per cent WHC and produced 54 seeds/plant, suggesting that this species is likely to compete strongly with crops in water stressed situations.
In favourable moisture conditions, both species will produce copious quantities of seed, suggesting that high infestation rates for both species may be a risk in irrigated crops.

Effect of seed burial on emergence, growth and persistence of wild oats and sterile oats
The seed longevity and emergence pattern of wild oat and sterile oat were monitored in field conditions at Gatton, Narrabri and St. George. Fresh weed seed was placed into nylon bags and buried at depths of 0, 2 and 10 cm in November 2017. Bags were exhumed at 6-month intervals over 30-months to evaluate seed germination, viability and decay.
For both species, 50 per cent of seeds at the surface and 10 cm depth had decayed within the first six months. Shallow burial (2 cm depth) of the seed increased persistence, with a significant percentage of seed being viable in the following winter cropping season.
The largest cohort of both species began to emerge at the start of the winter season (May). To ensure the seed bed is clean prior to planting, consider using tillage, herbicide application and cover crops to control this early cohort of Avena weeds. Tillage will bury seeds below their maximum depth of emergence and subsequent tillage should not be performed for 3–4 years to avoid bringing seeds back to the ‘emergence’ depth. Later emerging cohorts (through to October) will be suppressed using strong crop competition or a winter fallow if the infestation is severe.
The results of this research suggest that management strategies that can control all emerged seedlings over two years and restrict seed rain in the field could lead to complete control of weedy Avena spp. in the field.

Effect of wild oats and sterile oats infestation on wheat yield
The interference of wild oat and sterile oat in a wheat crop was examined through field studies in 2019 and 2020 at Gatton, Qld. Infestation levels of 0, 3, 6, 12, 24 and 48 plants m2 of both weed species were evaluated for their impact on wheat yield.
At an infestation level of 15 and 16 plants per m2 for wild oats and sterile oats respectively, wheat yield was halved as a result of reduced spike number per m2.
At the highest weed infestation level (48 plants per m2), wild oat and sterile oat produced a maximum of 4800 and 3970 seeds per m2, respectively. At wheat harvest, wild oat exhibited lower seed retention (17 to 39 per cent) than sterile oat (64 to 80 per cent), with most of the wild oat seeds having fallen from the seed heads before crop maturity.
The results of this study suggest that harvest weed seed control is likely to be a useful tactic in paddocks infested with sterile oat. An integrated weed management strategy that uses both chemical and nonchemical tactics is required to avoid severe crop yield loss, increased weed seed production and weed seedbank replenishment when these weed species are present.
This body of research highlights the benefits of an integrated weed management program that takes the ecology of the target weed into account.

This research was conducted by researchers from the University of Queensland, a WeedSmart scientific partner, with investment from the Grains Research and Development Corporation a WeedSmart sponsor.
Research papers

Mahajan, G., & Chauhan, B. (2021). Biological traits of six sterile oat biotypes in response to planting time. Agronomy Journal,113: 42-51 https://doi.org/10.1002/agj2.20507
Sahil , Mahajan G, Loura D, Raymont K, Chauhan BS (2020). Influence of soil moisture levels on the growth and reproductive behaviour of Avena fatua and Avena ludoviciana. PLoS ONE 15 (7): e0234648. https://doi.org/10.1371/journal.pone.0234648
Mahajan, G., & Chauhan, B. (2021). Seed longevity and seedling emergence behavior of wild oat (Avena fatua) and sterile oat (Avena sterilis ludoviciana) in response to burial depth in eastern Australia. Weed Science, 1-10. https://doi.org/10.1017/wsc.2021.7
Mahajan, G., & Chauhan, B. (2021). Interference of Wild Oats (Avena fatua) and Sterile Oats [Avena sterilis ssp. ludoviciana (Durieu)] in Wheat. Weed Science, 1-20.  https://doi.org/10.1017/wsc.2021.25

 

Article
News

WeedSmart Week goes to Esperance, WA

Growers and agronomists in each region and on each farm can adapt the WeedSmart Big 6 principles to bring more diversity to their farming system and bamboozle weeds.
Each year growers and agronomists are invited to attend WeedSmart Week, somewhere in Australia. This year the 3-day event will be held in Esperance, WA, beginning with a 1-day forum at the Civic Centre on Tuesday 17 August. The following two days will be spent touring farms in the Esperance region to see how growers are implementing the WeedSmart Big 6 tactics to minimise the impact of herbicide resistance on their businesses. The WeedSmart Week theme, ‘Diversify and Disrupt – Use the BIG 6 to beat crop weeds’, says it all!
Register now
Download the program
Program leader, Lisa Mayer says the first WeedSmart Week event was held in Perth in 2016 and it’s now a highly anticipated annual event hosted by the WeedSmart program. Having now been held in Queensland, New South Wales, Victoria and South Australia over the last five years, this year sees the flagship event returning to Western Australia. WeedSmart Week is supported by the GRDC as the major sponsor and a wide range of herbicide and machinery companies – all with skin in the weed control game. This will be the seventh WeedSmart Week event.

“The herbicide and non-herbicide tactics that form the WeedSmart Big 6 have been researched and demonstrated in the field – we know they work,” said Ms Mayer. “Low weed seed banks underpin all profitable farming enterprises. Keeping weed numbers low and quickly regaining control of blow-outs is the sole purpose of the WeedSmart program.”
WeedSmart is committed to exploring and promoting farming systems and technologies that produce ‘more yield, fewer weeds’ every year.
WeedSmart Week brings together a wealth of knowledge and experience from local and inter-state growers, researchers, advisors and technology experts – putting the spotlight on herbicide resistance and weed management. Growers can see first hand what is and isn’t working and consider how key principles can be applied directly to their own farming operation.
At the forum and on the bus trip growers, agronomists and researchers put all the options and ideas on the table for discussion. Greg Warren from Farm and General in Esperance is one of the local agronomists assisting with the planning for 2021 WeedSmart Week. As one of the forum speakers Greg will be sharing his thoughts on the control of weeds like summer-germinating ryegrass, marshmallow, fleabane and portulaca.
He says the growers around Esperance are tackling glyphosate resistance in annual ryegrass, along with brome and barley grass and other emerging weeds using a range of integrated control tactics.
“We know we can’t take the foot off the pedal when it comes to weed control,” he says. “Growers are always assessing their options and making decisions based on good science and demonstrated benefits – and that’s what events like WeedSmart Week bring to a district.”
Greg is encouraging local growers to register their interest early and is keen to welcome growers from other regions and inter-state to look, learn and discuss tactics that work.
There will be a focus on both herbicide and non-herbicide tools and plenty of chances to see how mechanical tactics like harvest weed seed control can fit into a variety of farming systems to drive down weed numbers.
The growers, agronomists and researchers speaking and participating in expert panels at the Day 1 forum will spark important discussions about herbicide resistance and how the Big 6 tactics can be used to target the weed species and farming systems of the high rainfall zones of southern and western Australia. There’s one thing for sure – doing nothing is not an option.
Day 2 and 3 will be bus tours to farms in the Scaddan and Howick areas surrounding Esperance. The bus trips will highlight how growers in the region are implementing the Big 6 weed management tactics in a variety of farming systems and environments.
This year, Ben White, Kondinin Group’s research manager will host the very popular technology and machinery field demo, where attendees will have the opportunity to see and discuss cutting-edge innovations such as the latest sprayer and weed detection technology and a range of harvest weed seed control implements, including impact mills and chaff decks.
Register for this important 3-day event for the ‘early bird’ single ticket price of $190 (GST incl), guaranteeing a seat on both the bus tour days as well as the forum, all fully catered. Early bird price is available until 31 July, 2021.
WeedSmart is committed to the health, safety and well-being of everyone working in, and in support of, the Australian grains industry. WeedSmart Week may be postponed in response to any coronavirus outbreak, and will be held in accordance with Australian Government advice in relation to social distancing.

Article
News

Remove the fetters from crops and they’ll trample the weeds

Weeds can exploit situations where crops fail to germinate or grow less vigorously. This does not usually mean that the weeds prefer soils that have constraints such as acidity, compaction or low nutrition status.
While crop responses to changes in soil pH are extensively researched, there is far less research available that quantifies the impact of the amelioration of soil acidity on weed growth.
Gauz Azam and Catherine Borger
To help fill this knowledge gap, research scientists Catherine Borger, Gaus Azam, Chris Gazey, Andrew van Burgel and Craig Scanlan from the Department of Primary Industries and Regional Development, Western Australia (DPIRD), have recently published the results from long-term studies measuring the impact of ameliorating soil acidity on the growth of annual (rigid) ryegrass (Lolium rigidum) in wheat.

Practical tips:

In acidic soils, the application of lime increases soil pH and improves the crop’s competitive ability against annual ryegrass.
Lime applications increase initial growth of both wheat and ryegrass.
The application of lime in previous years reduced ryegrass density, biomass, and seed production in wheat crops in 2018.
Lime increased wheat tiller number and, at one location, increased yield.
Crop and weed establishment may be poor in the season following soil amelioration. The crop often ‘catches up’ later in the season.
Reacidification is common. An ongoing liming program is likely to be required to maintain the competitive edge of crops over weeds such as annual ryegrass.

Most crops and pastures grow best in soils with a pH between 5.5 and 8, but some crops, such as barley, are more sensitive to soil pH than others. Similarly, some weeds are able to grow in hostile environments but will often grow better when the pH is in the optimal range for crop growth. For example, annual ryegrass competes very strongly with wheat in low pH soils, but actually grows best in the same pH range as crops. On the other hand, there is some evidence that wild radish prefers acidic soils.
Identifying soil constraints can involve detailed investigations and there are commonly multiple constraints at play. With approximately half of the agricultural soils in Australia having a surface pH of 5.5 or less, this constraint alone can be responsible for significant yield loss. Conversely, South Australian farmers are more likely to have to contend with high pH soil constraints, with 60 per cent of agricultural soils in that state being highly alkaline.
Experimental design features
These experiments were conducted at field sites in the Merredin and Wongan Hills shires in Western Australia. The scope of this research included two experiments:

A field experiment was conducted from 2016 to 2018 at DPIRD’s Merredin Research Facility on naturally acidic soil to investigate the effect of crop rotation (continuous wheat and wheat–chemical fallow), lime incorporation (nil and to 15 cm) and lime rate (0, 2, 4 and 6 t/ha). Wheat and annual ryegrass production was measured in the 2018 season.
A field experiment at DPIRD’s Wongan Hills Research Facility was established in 1994 on soil with low pH as a result of agricultural practices. The trial investigated the long-term effect of lime rate (0, 0.5, 1, 2 and 4 t/ha applied in 1994) and top-up applications of 0 or 1.5 t/ha in 1998 and 0 or 3 t/ha in 2014. In 2018 soil was cultivated to a depth of 0, 15 or 25 cm prior to seeding. Wheat and annual ryegrass production was measured in the 2018 season.

Detailed findings
Crop rotation and lime at Merredin
Within the continuous wheat rotation at Merredin, increasing rates of lime increased surface soil pH (0–5 cm) from 4.9 to 6.0 and pH at depth (10–15 cm) from 4.3 to 4.7 with no incorporation. Increasing rates of lime reduced density, biomass, and seed production of ryegrass and increased wheat tiller number and yield.
Incorporation of lime had no significant effect on wheat yield or ryegrass biomass, even though incorporation increased pH at depth (10–15 cm) from 4.2 to 5.1.
A wheat-fallow rotation reduced ryegrass density, biomass and seed production and increased yield compared to the continuous wheat system. Lime rate and incorporation within the wheat-fallow system increased soil pH (0–5 cm) from 4.9 to 5.8, but had no effect on ryegrass due to uniformly low weed pressure. Fallowing is a very effective weed control measure, but is unlikely to be a profitable option unless weed pressure is very high.
Long-term effects of lime application at Wongan Hills
Cumulative lime application at the Wongan Hills site increased soil pH from 5.6 to 6.4 (0–10 cm), 4.6 to 5.4 (10–20 cm), and 4.1 to 4.9 (20–30 cm).
Lime applications in 1994 and 2014 had long-lasting impact on weed growth, resulting in reduced ryegrass density, biomass and seed production in the 2018 crop. The lower rates applied in 1998 had no significant impact on ryegrass density and seed production.

Wheat density was not affected by lime, but tiller number increased with increasing rates of lime applied in 1994 and 2014. The slight increase to wheat yield following application of lime was not significant and incorporation of lime in 2018 did not affect ryegrass or wheat production.
Deep tillage increased pH at depth (20–30 cm) from 4.2 to 5.2. The interaction between lime application in 2014 and incorporation of lime in 2018 was significant for ryegrass, with weed density, biomass and seed production decreasing with increasing depth of tillage in those plots where lime was not applied in 2014 (0 t/ha treatment). Deep tillage did not significantly affect ryegrass in plots where 3 t/ha of lime was applied in 2014, as ryegrass density was already very low across all tillage treatments. By 2018, the lime applied in 2014 had already done the heavy lifting in terms of reducing weed pressure in the 3 t/ha plots.

WeedSmart conclusion
Applying and incorporating lime is the best way to increase the pH of acidic soils, but it usually takes several years before a surface lime application has a measurable effect on soil pH at depth. Incorporation is the best way to speed up the process and also releases other soil nutrients to boost crop growth.
By default, the incorporation of lime by tillage or inversion also buries weed seed, placing at least a portion of the seed bank deeper in the soil profile and prohibiting germination. Annual ryegrass seed has optimal emergence from a depth of 1 or 2 cm. Emergence reduces with increasing depth and ryegrass does not emerge from depths of 10 cm or more. Even when buried, some seed can remain viable and emerge if the next sowing operation brings the seed back near the soil surface.
This trial work confirms the importance of crop competition in a diverse weed control program. Addressing soil constraints, such as low pH (and the associated aluminium toxicity), enables the crop to compete strongly with weeds such as annual ryegrass – reducing weed growth and seed production.

This research was conducted by researchers from the Department of Primary Industries and Regional Development, Western Australia and was supported by the Grains Research and Development Corporation, a WeedSmart financial partner, through the Soil Constraints Initiative—Innovative Approaches to Managing Subsoil Acidity (DAW00252) project.
References
Borger CPD, Azam G, Gazey C, van Burgel A, Scanlan CA (2020) Ameliorating soil acidity–reduced growth of rigid ryegrass (Lolium rigidum) in wheat. Weed Sci. 68: 426–433. doi: 10.1017/wsc.2020.38

Article
News

Central NSW growers investigate IWM options

Having completed a two-year demonstration of chaff decks with investment from the GRDC, Tim, along with cropping officers from adjacent LLS regions, are capitalising on the interest in integrated weed management tactics to counter the insidious rise of herbicide resistance in weeds.
“Annual ryegrass is one of the main weeds causing growers concern in-crop,” he said. “There is known resistance to Group 1 [A] and 2 [B] herbicides, and there are strong indications that glyphosate resistance is evolving on some farms.”
Tim Bartimote, Local Land Services (LLS) in Dubbo, says many grain growers in the Central West region of NSW are keen to see the benefits of integrated weed management tactics demonstrated in their area.
Harvest weed seed control has been commonly practiced in the region for many years, primarily as narrow windrow burning or simply broadacre stubble burning. Tim says there is a definite shift in interest toward technologies such as impact mills, although the price of these machines is a barrier to immediate and wide-spread adoption.
“Through discussions with grower groups we found that a few growers had moved into using chaff decks and chaff-lining, but these options were not well-known to others in the area,” says Tim. “We decided to demonstrate chaff decks, which are less expensive than impact mills and are well-suited to the controlled traffic systems used on a few properties in the region.”
The two growers who demonstrated the use of chaff deck systems both identified resistant ryegrass as their main weed target for harvest weed seed control.
“At the demonstration site at Parkes, the ryegrass population was evenly spread across the paddock at a density of 26 plants per metre square,” says Tim. “For the purposes of monitoring the effect of the chaff deck operation, we chose four sites within the paddock and found 4, 19 and 9 plants per m2 away from the wheeltracks and 68 plants per m2 on the wheeltracks.”
“This clearly demonstrated the shift of ryegrass seed from being spread across the paddock to being concentrated on the wheeltracks where seedlings can be controlled with other tactics as required.”
Chaff decks help concentrate the weed seed onto the wheel tracks during harvest.
At the second site, near Gilgandra, the weed population was found concentrated in patches. Tim and the grower, Daniel Volkofsky, GPS-marked sites within the paddock following the 2020 harvest and will monitor the shift in weed density over the next few years.
The growers used both commercial and home-made chaff deck systems in the demonstrations and found both options were effective. In addition to the traditional use of HWSC in winter crops, Daniel also tried using his chaff decks in a sorghum crop but ran into trouble with blockages on the leading edge of the baffle plate. Some growers have added cameras to help monitor stubble flow over the baffle plate and pre-empt blockages.
Tim says the LLS team wants to achieve a ‘weed management legacy’ from the investment of GRDC funds in the region.
“One of the outcomes of the GRDC-funded project was to build a network of growers with experience using different tactics in their integrated weed management programs,” says Tim. “We are now able to direct interested growers to speak to and visit growers in their region who can talk to them about what they have tried and what has worked well for them.”
“Some of the growers who have manufactured various harvest weed seed control devices on farm are willing to share their low-cost designs with others who are not ready to invest in the commercial models. There is also a pool of experience when it comes to the modifications to baffles and chutes required for different header makes and models.”
HWSC is one of the WeedSmart Big 6 tactics that under pin integrated weed management programs across Australia. Within each of the tactics growers are implementing a range of different methods that suit their own systems to keep weed numbers low.
Tim says they are capitalising on the interest generated through the project to now test and compare the efficacy of a range of pre-emergent herbicides on the market.
Resources:

WeedSmart podcast with Tim Bartimote

Article
News

Mix up your approach to fenceline weeds

Glyphosate has been the go-to product for keeping weeds in these areas under control for a long time but unfortunately it is often the only product used and the weeds are commonly quite large when they are sprayed. The result is that glyphosate resistance can, and does, quietly build up in these zones in a wide variety of weed species.
Fencelines will always be a potential source of weed seed but there are ways to ensure that the seed from these areas is not already resistant to the herbicides when it blows into the production areas.
Farmanco agronomist, Brent Pritchard, collected the suspect capeweed samples on a farm near Borden in Western Australia. The capeweed had evolved resistance to glyphosate in an un-cropped drainage area, where it had routinely been sprayed with glyphosate, and had then invaded the adjacent field. The cropped area had been managed with a diverse rotation of wheat, TT canola, pasture and fallow over a 17-year period.
The capeweed samples also showed signs of resistance to metosulam (Eclipse®) and diflufenican (Brodal®), but were susceptible to a range of other herbicides including clopyralid, MCPA, bromoxynil, diuron, metribuzin, simazine, Spray.Seed® and Velocity®.
Dr Yaseen Khalil, a researcher in the agronomy team at the Australian Herbicide Resistance Initiative (AHRI), conducted the resistance screening and confirmed the resistance status of the capeweed population.
AHRI’s Dr Yaseen Khalil confirmed the resistance status of the capeweed samples and is urging growers to take a more diverse approach to weed management in non-cropped areas around the farm
“There is no doubt that an integrated approach to weed management needs to be applied to non-production areas such as fencelines, around buildings, along tracks and roads and around irrigation infrastructure,” says Dr Khalil.
“Probably the first step is to stop using glyphosate alone in these areas unless you are able to reliably apply a double knock to every application. Evolving resistance to this useful herbicide in non-productive zones is counter productive at the least.”
Wherever possible, apply glyphosate in a mix with other herbicides effective on the target weeds, then follow with a second knock.
The main problem on fencelines is the lack of competition to weeds. If pastures are part of the crop rotation it may be possible to establish the pasture species along the fenceline and leave them in place when the paddock returns to the cropping phase. Similarly, the crop can often be sown right up to the fence and the first round or two mown or baled for hay prior to harvest. If there are livestock in the production system they can be used to graze the perimeter in the fallow or in suitable crops.
Mowing or baling the perimeter of the crop can halt the incursion of weeds into the crop area.
Establishing cover using desirable perennial species and eliminating fenceline spraying could be a long-term solution to stop fencelines being a source of herbicide resistant weeds.
If this is not practical, or if the non-crop area must be kept bare for other reasons, such as managing insect pests, close attention must be paid to using alternative herbicides, double knocking, mixing and rotating herbicides and eliminating survivors.
Applying the WeedSmart Big 6 tactics to non-crop areas is a pre-emptive strike on ‘home-grown’ herbicide resistance.
More resources:

AHRI Insight – World-first: glyphosate resistant capeweed
Management of herbicide resistant weeds on fencelines
Don’t jeopardise glyphosate for clean fencelines

Subscribe to the WeedSmart Newsletter