Resources

Articles

View all
Article
Case Study

Elton and Pam Petersen, Moonie Qld

A SwarmFarm robot, ‘Oscar’, has added another dimension to Elton and Pam Petersen’s integrated weed management program, which features the majority of the WeedSmart Big 6 tactics.
In two summer fallows the Petersens have regained control of glyphosate resistant feathertop Rhodes grass (FTR) and awnless barnyard grass (BYG) that was threatening their 2000 ha dryland cropping operation at Moonie, on the Western Downs.
Elton and Pam Petersen, ‘Traighli’ near Moonie on the western Darling Downs.
The Petersens have achieved this remarkable feat after deploying ‘Oscar’ with a 12 m weedIT boom attachment. In the 20 months that Oscar has been spraying weeds in the summer fallow, ‘he’ has clocked up over 3000 hrs and passed over more than 25,000 ha.
Elton and Pam purchased ‘Traighli’, a 2370 ha grain and cattle property 5 km north of Moonie, on the western Darling Downs, in 2015. Previously they had farmed on the Fraser Coast growing sugarcane, soybeans and pineapples, and running cattle.
At the time of purchase, weeds that adapt well to conservation cropping systems had established populations that were impacting on the profitability of grain production. Elton’s initial plan was to use cultivation and blanket spraying to regain the upper hand, particularly of the herbicide resistant summer-growing grass weeds.
“Cultivation certainly helped reduce weed numbers, but was never intended to be a long-term, sustainable solution to manage these weeds. It was also too costly to use the blanket sprayer frequently enough to prevent seed set,” said Elton. “We were interested in optical spot spraying technology and everyone we spoke to who used this technology gave very positive feedback – except that it was still not practical to spray as frequently as is required to target small weeds.”
After further investigation the Petersens decided to invest in technology that would maximise the efficacy of the optical spot sprayer in their weed control program.
“Our choice was between a 36 m tow-behind weedIT boom and a 12 m weedIT boom mounted on a SwarmFarm robot,” said Elton. “We saw the robotic platform as a way for us to really hit our grass weed problem hard and to drive down the weed seed back as quickly as possible, with minimal operator input.”
The Petersens with SwarmFarm founders Andrew and Jocie Bate and SwarmFarm team members Tom Holcombe and Jarrod Jackson.
“In such a short space of time we have dramatically reduced the seed bank to the point where Oscar can work for up to 40 hours scouting and spraying weeds without the spray tank needing to be refilled,” said Elton. “This fact alone is incredibly important. It gives us much more freedom without compromising the weed management program.”
Elton has also experienced a significant mind-set change to weed management as a result of deploying Oscar. Applying constant pressure to small, fresh weed seedlings has seen the weed seed bank dwindle as no new seed has been produced for two summers.
When blanket spraying, Elton knew he was compromising on water and chemical rates in the interests of saving money and time. He said the focus was always on trying to make the spray operation more efficient and this often resulted in some weeds being larger than ideal when the herbicide was applied.
“With a tow-behind optical boom we would have improved our chemical and water application rates but not solved the frequency and consistency problem we had with the blanket spray system,” he said. “Automation brings the consistency. If Oscar goes out spraying and finds only a few weeds it only costs us $0.50/ha in diesel, and we are paying for the machine whether we use it or not.”
In the 2020/21 summer fallow, chemical costs totalled just $12.80 per ha for all the summer weed control and the pre-plant knockdown spray. Elton says this is equivalent to the cost of a single blanket spray in the past.
“In our old system we were never on top of resistant weeds and although the new system probably has similar costs, we are achieving a much better result,” said Elton. “We have essentially invested in technology that does a better job with less chemical – the long-term benefits have been realised more quickly than we dared to hope. The saving in chemical cost is even greater than I expected.”
Summer fallow spray program
In the 2020-21 summer fallow Oscar completed seven passes of the whole farm between mid-November 2020 and May 2021. For the 25-week fallow period, the property received around 650 mm of rainfall (more than the annual average for the property), with the longest stretch without rain being just 10 days. Being able to send Oscar out spraying almost immediately after rain has allowed the Petersens to treat each new germination of weeds while still very small. Elton also has Oscar set to only spray when the conditions are cool, to maximise herbicide uptake.
BYG sets seed very quickly, even quicker than FTR, so there is no opportunity to stop seed set other than killing the seedling before it seeds. Elton believes he is on track to eradicate both of these grass weeds within the next few years and will be able to reduce or eliminate the use of Group A herbicide in the summer fallow.
He says they are currently applying Group A herbicide in three passes, but each round is only using one drum of Group A product, across the 2000 ha cropped area.
The other fallow sprays are glyphosate immediately after harvest and after the first rain (for crop volunteers) and then the pre-seeding knockdown.
“The glyphosate / paraquat double knock has been replaced with frequent spraying using the robots to target small, fresh weeds,” says Elton. “There is limited opportunity to double knock as each paddock is sprayed roughly every 21 days.”
“This property is heavy grey cracking clay soil and melon hole country, so we have really noticed a difference in being able to access the paddocks with such a light machine much sooner after rain than is possible with a tractor,” said Elton. “Everything is centred on hitting weeds when they are very small and at their most susceptible to herbicide. This has resulted in a large reduction in the amount of chemical used.”
Another feature that Elton uses to enhance the efficacy of the pre-plant herbicide treatment is to slow Oscar down and increase the sensitivity of the optical detection to ensure that the very smallest of weeds are ‘seen’ and sprayed. This essentially saves them the cost of a pre-plant blanket knockdown.
Very clean fallow in the background compared to two passes that were missed due to an error in the robot’s instructions.
Winter weed control tactics
The Petersen’s winter cropping program is limited to growing chickpea, wheat and barley, so although they rotate the available chemistry, their options are restricted. When the opportunity arises they plant a summer crop followed by a winter fallow to target black oats and phalaris.
“We do one in-crop spray in wheat to target these grass weeds and are aware of the risk of Group A resistance in black oats, and a second in-crop spray is to control broadleaf winter weeds,” says Elton. “We use robust rates and ensure there are no survivors. A targeted winter fallow program would also go a long way to reducing the impact of herbicide resistance in black oats.”
Chickpea crops are now sown on the same 375 mm (15 inch) row spacing as the cereals, which is proving beneficial in both higher yield and weed suppression compared to the 760 mm (30 inch) spacing used previously in chickpea. Pre-emergent herbicide is applied ahead of chickpeas and in summer crops.
“We set our planting date to avoid frost risk and want to get the crop in as quickly as possible and have the option to use moisture seeking techniques in dry years,” says Elton. “You can’t overestimate the effect of canopy closure on weeds and evaporation.”
Resources

SwarmFarm: Targeting small weeds all year

Article
News

Don’t sow wild oats

Ranked as the third most costly weed in Australian grain cropping, three weedy Avena spp. – wild oat, sterile oat and slender oat – are estimated to infest over two million hectares, causing crop yield losses of 114,596 t and a national revenue loss of $28.1 million.
In the southern and western regions, the main species found is wild oats (A. fatua), while in the northern region, sterile oat (A. sterilis ssp. ludoviciana) is the more problematic species. Both have evolved resistance to multiple herbicide groups in Australia.

QAAFI weed researchers Gulshan Mahajan and Bhagirath Chauhan have recently published a series of papers on their weed ecology studies of Avena spp., providing growers and agronomists with more information to use when formulating integrated management plans for these weeds in crops.
Practical tips

Both wild oat and sterile oat can survive in soil moisture conditions of 60 per cent water holding capacity (WHC). Sterile oat even produced seed at 40 per cent WHC.
Seedlings of these weeds can emerge from a depth of 10 cm, but greater emergence occurred from 2 and 5 cm depths. Emergence commenced at the start of winter (May) and continued until spring (October).
Early emergence plants produce the most seed, but later emergence plants can still produce enough seed to support reinfestation.
In a no-till system there is low persistence of seed on the soil surface. A 2-year assault on the weed seed bank can result in complete control of infestations.
Weed density of 15 wild oat and 16 sterile oat plants/m2 resulted in a 50 per cent reduction in wheat yield. Lower weed density (just 3 plants/m2) can still support reinfestation.
Sterile oat is a better candidate than wild oat for harvest weed seed control (HWSC).
Wild oat is best managed through early weed control (pre and post sowing) and strong crop competition.
An integrated approach to weed management can reduce Avena weed biomass by up to 90 per cent.

Experimental design features
We are summarising the finding from four related research papers:

Biological traits of six sterile oat biotypes in response to planting time. https://doi.org/10.1002/agj2.20507
Influence of soil moisture levels on the growth and reproductive behaviour of Avena fatua and Avena ludoviciana. https://doi.org/10.1371/journal.pone.0234648
Seed longevity and seedling emergence behaviour of wild oat (Avena fatua) and sterile oat (Avena sterilis ludoviciana) in response to burial depth in eastern Australia. https://doi.org/10.1017/wsc.2021.7
Interference of wild oats (Avena fatua) and sterile oats (Avena sterilis ludoviciana) in wheat. https://doi.org/10.1017/wsc.2021.25

Detailed findings
Sterile oats growth and seed production for early and late emergence cohorts
Six biotypes of sterile oats were collected from sites in southern Qld and northern NSW and planted in field conditions at the Gatton research farm in the winter cropping seasons of 2018 and 2019. The weed seed was sown early, mid and late season and the growth and reproductive potential of the six biotypes was monitored.
Averaged across the biotypes, the early planted weeds produced 2660 seeds/plant. Weeds sow mid-season produced 21 per cent less seed and the late-season weeds produced 84 per cent less seed than the early-season plants.
Although seed production was more prolific from the early and mid season plants, the late season plants produced sufficient seed to support reinfestation the following season.
A clean seed bed and competitive crop environment is the best strategy to suppress sterile oat seed production.

Effect of moisture stress on biomass and seed production of wild oats and sterile oats
Seeds of wild oat and sterile oat used in this study were collected from Warialda, NSW, in October 2017 and multiplied at the University of Queensland, Gatton Research Farm in the winter season of 2018. The pot trial to investigate the effect of 20, 40, 60, 80 and 100 per cent water holding capacity (WHC) on these two Avena weed species was conducted in 2019.
Results revealed that wild oat did not survive, and failed to produce seeds, at 20 and 40 per cent WHC. However, sterile oat survived at 40 per cent WHC and produced 54 seeds/plant, suggesting that this species is likely to compete strongly with crops in water stressed situations.
In favourable moisture conditions, both species will produce copious quantities of seed, suggesting that high infestation rates for both species may be a risk in irrigated crops.

Effect of seed burial on emergence, growth and persistence of wild oats and sterile oats
The seed longevity and emergence pattern of wild oat and sterile oat were monitored in field conditions at Gatton, Narrabri and St. George. Fresh weed seed was placed into nylon bags and buried at depths of 0, 2 and 10 cm in November 2017. Bags were exhumed at 6-month intervals over 30-months to evaluate seed germination, viability and decay.
For both species, 50 per cent of seeds at the surface and 10 cm depth had decayed within the first six months. Shallow burial (2 cm depth) of the seed increased persistence, with a significant percentage of seed being viable in the following winter cropping season.
The largest cohort of both species began to emerge at the start of the winter season (May). To ensure the seed bed is clean prior to planting, consider using tillage, herbicide application and cover crops to control this early cohort of Avena weeds. Tillage will bury seeds below their maximum depth of emergence and subsequent tillage should not be performed for 3–4 years to avoid bringing seeds back to the ‘emergence’ depth. Later emerging cohorts (through to October) will be suppressed using strong crop competition or a winter fallow if the infestation is severe.
The results of this research suggest that management strategies that can control all emerged seedlings over two years and restrict seed rain in the field could lead to complete control of weedy Avena spp. in the field.

Effect of wild oats and sterile oats infestation on wheat yield
The interference of wild oat and sterile oat in a wheat crop was examined through field studies in 2019 and 2020 at Gatton, Qld. Infestation levels of 0, 3, 6, 12, 24 and 48 plants m2 of both weed species were evaluated for their impact on wheat yield.
At an infestation level of 15 and 16 plants per m2 for wild oats and sterile oats respectively, wheat yield was halved as a result of reduced spike number per m2.
At the highest weed infestation level (48 plants per m2), wild oat and sterile oat produced a maximum of 4800 and 3970 seeds per m2, respectively. At wheat harvest, wild oat exhibited lower seed retention (17 to 39 per cent) than sterile oat (64 to 80 per cent), with most of the wild oat seeds having fallen from the seed heads before crop maturity.
The results of this study suggest that harvest weed seed control is likely to be a useful tactic in paddocks infested with sterile oat. An integrated weed management strategy that uses both chemical and nonchemical tactics is required to avoid severe crop yield loss, increased weed seed production and weed seedbank replenishment when these weed species are present.
This body of research highlights the benefits of an integrated weed management program that takes the ecology of the target weed into account.

This research was conducted by researchers from the University of Queensland, a WeedSmart scientific partner, with investment from the Grains Research and Development Corporation a WeedSmart sponsor.
Research papers

Mahajan, G., & Chauhan, B. (2021). Biological traits of six sterile oat biotypes in response to planting time. Agronomy Journal,113: 42-51 https://doi.org/10.1002/agj2.20507
Sahil , Mahajan G, Loura D, Raymont K, Chauhan BS (2020). Influence of soil moisture levels on the growth and reproductive behaviour of Avena fatua and Avena ludoviciana. PLoS ONE 15 (7): e0234648. https://doi.org/10.1371/journal.pone.0234648
Mahajan, G., & Chauhan, B. (2021). Seed longevity and seedling emergence behavior of wild oat (Avena fatua) and sterile oat (Avena sterilis ludoviciana) in response to burial depth in eastern Australia. Weed Science, 1-10. https://doi.org/10.1017/wsc.2021.7
Mahajan, G., & Chauhan, B. (2021). Interference of Wild Oats (Avena fatua) and Sterile Oats [Avena sterilis ssp. ludoviciana (Durieu)] in Wheat. Weed Science, 1-20.  https://doi.org/10.1017/wsc.2021.25

 

Article
News

WeedSmart Week goes to Esperance, WA

Growers and agronomists in each region and on each farm can adapt the WeedSmart Big 6 principles to bring more diversity to their farming system and bamboozle weeds.
Each year growers and agronomists are invited to attend WeedSmart Week, somewhere in Australia. This year the 3-day event will be held in Esperance, WA, beginning with a 1-day forum at the Civic Centre on Tuesday 17 August. The following two days will be spent touring farms in the Esperance region to see how growers are implementing the WeedSmart Big 6 tactics to minimise the impact of herbicide resistance on their businesses. The WeedSmart Week theme, ‘Diversify and Disrupt – Use the BIG 6 to beat crop weeds’, says it all!
Register now
Program leader, Lisa Mayer says the first WeedSmart Week event was held in Perth in 2016 and it’s now a highly anticipated annual event hosted by the WeedSmart program. Having now been held in Queensland, New South Wales, Victoria and South Australia over the last five years, this year sees the flagship event returning to Western Australia. WeedSmart Week is supported by the GRDC as the major sponsor and a wide range of herbicide and machinery companies – all with skin in the weed control game. This will be the seventh WeedSmart Week event.

“The herbicide and non-herbicide tactics that form the WeedSmart Big 6 have been researched and demonstrated in the field – we know they work,” said Ms Mayer. “Low weed seed banks underpin all profitable farming enterprises. Keeping weed numbers low and quickly regaining control of blow-outs is the sole purpose of the WeedSmart program.”
WeedSmart is committed to exploring and promoting farming systems and technologies that produce ‘more yield, fewer weeds’ every year.
WeedSmart Week brings together a wealth of knowledge and experience from local and inter-state growers, researchers, advisors and technology experts – putting the spotlight on herbicide resistance and weed management. Growers can see first hand what is and isn’t working and consider how key principles can be applied directly to their own farming operation.
At the forum and on the bus trip growers, agronomists and researchers put all the options and ideas on the table for discussion. Greg Warren from Farm and General in Esperance is one of the local agronomists assisting with the planning for 2021 WeedSmart Week. As one of the forum speakers Greg will be sharing his thoughts on the control of weeds like summer-germinating ryegrass, marshmallow, fleabane and portulaca.
He says the growers around Esperance are tackling glyphosate resistance in annual ryegrass, along with brome and barley grass and other emerging weeds using a range of integrated control tactics.
“We know we can’t take the foot off the pedal when it comes to weed control,” he says. “Growers are always assessing their options and making decisions based on good science and demonstrated benefits – and that’s what events like WeedSmart Week bring to a district.”
Greg is encouraging local growers to register their interest early and is keen to welcome growers from other regions and inter-state to look, learn and discuss tactics that work.
There will be a focus on both herbicide and non-herbicide tools and plenty of chances to see how mechanical tactics like harvest weed seed control can fit into a variety of farming systems to drive down weed numbers.
The growers, agronomists and researchers speaking and participating in expert panels at the Day 1 forum will spark important discussions about herbicide resistance and how the Big 6 tactics can be used to target the weed species and farming systems of the high rainfall zones of southern and western Australia. There’s one thing for sure – doing nothing is not an option.
Day 2 and 3 will be bus tours to farms in the Scadden and Howick areas surrounding Esperance. The bus trips will highlight how growers in the region are implementing the Big 6 weed management tactics in a variety of farming systems and environments.
This year, Ben White, Kondinin Group’s research manager will host the very popular technology and machinery field demo, where attendees will have the opportunity to see and discuss cutting-edge innovations such as the latest sprayer and weed detection technology and a range of harvest weed seed control implements, including impact mills and chaff decks.
Register for this important 3-day event for the ‘early bird’ single ticket price of $190 (GST incl), guaranteeing a seat on both the bus tour days as well as the forum, all fully catered. Early bird price is available until 31 July, 2021.
WeedSmart is committed to the health, safety and well-being of everyone working in, and in support of, the Australian grains industry. WeedSmart Week may be postponed in response to any coronavirus outbreak, and will be held in accordance with Australian Government advice in relation to social distancing.

Article
Ask an Expert

How does ryegrass adapt so readily to farming practices and environmental changes?

Annual and perennial species of ryegrass (Lolium spp.) are weeds of major and global significance in cropping systems. Native to temperate regions of Europe, Asia and North America, these species have been transported, mostly as pasture plants, turf, cover crops and as contaminants in crop seed, feed grain and hay, to all grain production areas of the world.
Dr Chris Preston, Professor, Weed Management at The University of Adelaide, says perennial ryegrass, Italian ryegrass and rigid ryegrass can be difficult to distinguish and have the ability to interbreed – giving the species increased invasive powers.
Dr Chris Preston, Professor, Weed Management at The University of Adelaide, says that unlike some other weed species, ryegrass populations adapt to new environments very quickly.
“The genetic diversity of the ryegrass species has seen populations adapt very quickly to altered environments,” he says. “The most widely researched adaptations have been those associated with herbicide resistance, but we are also seeing many other examples of ryegrass evading cultural controls, adapting to new farming systems and extending its geographical and climatic range.”
Previously considered a weed of southern farming systems with Mediterranean climates and winter dominant rainfall, ryegrass is becoming increasingly common in more northernly locations with summer dominant rainfall patterns.
“Unlike some other weed species, ryegrass populations adapt to the new environment very quickly,” says Chris. “The extensive genetic diversity means populations can readily adapt to new environments and stresses. This is aided by ‘new arrivals’ that may bring new adaptations, such as seed dormancy or herbicide resistance, which have evolved elsewhere.”
Ryegrass is a dramatic example of why the WeedSmart Big 6 approach is so important – adding diversity to farming systems, both within and between seasons. There is no ‘set and forget’ integrated weed management system – every season needs to present this super-weed with a fresh challenge.
What is the best way to keep ahead of ryegrass blow-outs?
In brief: Longer and more diverse rotations.
The details: Short rotations are very easy for weeds like ryegrass to adapt to. This is seen in its ability to adapt to multiple herbicide modes of action and also to make definite shifts in the population’s phenology.
If a tight rotation has been in place for 10 or 20 years it’s definitely time to look for alternatives. Adaptive species like ryegrass will start to respond to repeated practices (herbicide and cultural) that are applied for four or five years in a row.
In a tight rotation, ryegrass can evolve resistance to early sowing in a no till system through seed dormancy, or resistance to harvest weed seed control through early shedding of seed. Each agricultural practice is in fact applying selection pressure – the only solution is to frequently alter the type of selection.
The worst thing you can do is to keep doing the same thing. If you are limited in crop choice, then consider changing other practices used regularly within each crop.
In short rotations, annual ryegrass can rapidly evolve to evade routine practices.
Why is it important to have diverse crop rotations?
In brief: To keep ahead of adaptation through seed dormancy.
The details: Pre-emergent herbicides have become an important part of a diverse herbicide program for ryegrass control. Ryegrass can and will evolve resistance to specific pre-emergent herbicide modes of action, but it can and will also adapt mechanisms to avoid pre-emergent herbicide activity, such as through altered seed dormancy.
If the pre-emergent herbicide is applied at the same time each season it will not be long before the dominant population is germinating later in the season, having not interacted with the herbicide at all.
In this situation, there is an even greater need for the crop to be highly competitive by the time the more dormant seeds germinate, to suppress weed growth and seed production.
Rotating to pasture or to crops sown later will disrupt the selection for increased dormancy.
Again, maximising the diversity in the crop rotation is the foundation of an effective integrated weed management program.
Are there things I should do every year?
In brief: All the WeedSmart Big 6 tactics need to be applied as often as possible.
The details: But there needs to be diversity within years as well. For example, harvest weed seed control is recommended for all paddocks, every year – so the diversity needs to come through other tactics, such as rotating crops and rotating herbicides.
Just as with herbicides, harvest weed seed control alone will not provide long term control of ryegrass.

Resources

Review: evolutionary drivers of agricultural adaptation in Lolium spp., Maor Matzrafi, Christopher Preston and Caio Augusto Brunharo, 2021, Pest Management Science

Podcasts

View all
Audio
Podcast

Regional Update – Adrian Perks, Farmer, Esperance, WA

We’ll be visiting Adrian’s farm as part of Esperance WeedSmart Week, so we’ll find out more about that and get a weed focused update for his region.
WeedSmart Week
WeedSmart Week Esperance is 17-19 of August. To find out more about this event and to buy tickets, click here.

Audio
Podcast

Weed seed impact mill update with Ben White and farmer case studies

We feature farmer case studies from each of our mill partners, including HSD, Redekop and Seed Terminator.
The farmers we hear from are Steve Lord (Goomalling, WA – Redekop); Tyson Schutz, who is pictured above with Dad Mick (Grass Patch, WA – Seed Terminator); and Jon Beasley (Franklin River, WA – HSD).

Farmer, Steve Lord, who has a Redekop mill.

We also be hearing from Kondinin Group’s Ben White who provides us with a technical overview and details the latest updates on this technology.
WeedSmart Week
This year, our annual flagship event will be held in Esperance, WA from the 17th to the 19th of August 2021. WeedSmart Week is designed to engage growers and advisors on WeedSmart’s Big 6 messages. You can get your tickets here.
New content
Make sure you check out our latest Ask an Expert. This month Dr Chris Preston answers the question “How does ryegrass adapt so readily to farming practices and environmental changes?”
Don’t forget to follow us on Twitter and Facebook and also sign-up for our monthly blog. You can also subscribe to the WeedSmart Whip Around, so you never miss any of our content.
Related content
We mentioned on the podcast that Tyson Schutz’s Dad, Mick Schutz, featured in a GRDC publication entitled “Investigating the harvest weed seed control tools chaff lining and chafftramlining (chaffdeck) in the Esperance area”. Check that out here.

Audio
Podcast

Regional Update – James Challis, Agronomist, Echuca, Victoria

In this edition of the Regional Update, we’re heading to the Southern Region and catching up with Nutrien Agronomist, James Challis. James is based in Echuca in Victoria.

 

Case Studies

View all
Article
Case Study

Elton and Pam Petersen, Moonie Qld

A SwarmFarm robot, ‘Oscar’, has added another dimension to Elton and Pam Petersen’s integrated weed management program, which features the majority of the WeedSmart Big 6 tactics.
In two summer fallows the Petersens have regained control of glyphosate resistant feathertop Rhodes grass (FTR) and awnless barnyard grass (BYG) that was threatening their 2000 ha dryland cropping operation at Moonie, on the Western Downs.
Elton and Pam Petersen, ‘Traighli’ near Moonie on the western Darling Downs.
The Petersens have achieved this remarkable feat after deploying ‘Oscar’ with a 12 m weedIT boom attachment. In the 20 months that Oscar has been spraying weeds in the summer fallow, ‘he’ has clocked up over 3000 hrs and passed over more than 25,000 ha.
Elton and Pam purchased ‘Traighli’, a 2370 ha grain and cattle property 5 km north of Moonie, on the western Darling Downs, in 2015. Previously they had farmed on the Fraser Coast growing sugarcane, soybeans and pineapples, and running cattle.
At the time of purchase, weeds that adapt well to conservation cropping systems had established populations that were impacting on the profitability of grain production. Elton’s initial plan was to use cultivation and blanket spraying to regain the upper hand, particularly of the herbicide resistant summer-growing grass weeds.
“Cultivation certainly helped reduce weed numbers, but was never intended to be a long-term, sustainable solution to manage these weeds. It was also too costly to use the blanket sprayer frequently enough to prevent seed set,” said Elton. “We were interested in optical spot spraying technology and everyone we spoke to who used this technology gave very positive feedback – except that it was still not practical to spray as frequently as is required to target small weeds.”
After further investigation the Petersens decided to invest in technology that would maximise the efficacy of the optical spot sprayer in their weed control program.
“Our choice was between a 36 m tow-behind weedIT boom and a 12 m weedIT boom mounted on a SwarmFarm robot,” said Elton. “We saw the robotic platform as a way for us to really hit our grass weed problem hard and to drive down the weed seed back as quickly as possible, with minimal operator input.”
The Petersens with SwarmFarm founders Andrew and Jocie Bate and SwarmFarm team members Tom Holcombe and Jarrod Jackson.
“In such a short space of time we have dramatically reduced the seed bank to the point where Oscar can work for up to 40 hours scouting and spraying weeds without the spray tank needing to be refilled,” said Elton. “This fact alone is incredibly important. It gives us much more freedom without compromising the weed management program.”
Elton has also experienced a significant mind-set change to weed management as a result of deploying Oscar. Applying constant pressure to small, fresh weed seedlings has seen the weed seed bank dwindle as no new seed has been produced for two summers.
When blanket spraying, Elton knew he was compromising on water and chemical rates in the interests of saving money and time. He said the focus was always on trying to make the spray operation more efficient and this often resulted in some weeds being larger than ideal when the herbicide was applied.
“With a tow-behind optical boom we would have improved our chemical and water application rates but not solved the frequency and consistency problem we had with the blanket spray system,” he said. “Automation brings the consistency. If Oscar goes out spraying and finds only a few weeds it only costs us $0.50/ha in diesel, and we are paying for the machine whether we use it or not.”
In the 2020/21 summer fallow, chemical costs totalled just $12.80 per ha for all the summer weed control and the pre-plant knockdown spray. Elton says this is equivalent to the cost of a single blanket spray in the past.
“In our old system we were never on top of resistant weeds and although the new system probably has similar costs, we are achieving a much better result,” said Elton. “We have essentially invested in technology that does a better job with less chemical – the long-term benefits have been realised more quickly than we dared to hope. The saving in chemical cost is even greater than I expected.”
Summer fallow spray program
In the 2020-21 summer fallow Oscar completed seven passes of the whole farm between mid-November 2020 and May 2021. For the 25-week fallow period, the property received around 650 mm of rainfall (more than the annual average for the property), with the longest stretch without rain being just 10 days. Being able to send Oscar out spraying almost immediately after rain has allowed the Petersens to treat each new germination of weeds while still very small. Elton also has Oscar set to only spray when the conditions are cool, to maximise herbicide uptake.
BYG sets seed very quickly, even quicker than FTR, so there is no opportunity to stop seed set other than killing the seedling before it seeds. Elton believes he is on track to eradicate both of these grass weeds within the next few years and will be able to reduce or eliminate the use of Group A herbicide in the summer fallow.
He says they are currently applying Group A herbicide in three passes, but each round is only using one drum of Group A product, across the 2000 ha cropped area.
The other fallow sprays are glyphosate immediately after harvest and after the first rain (for crop volunteers) and then the pre-seeding knockdown.
“The glyphosate / paraquat double knock has been replaced with frequent spraying using the robots to target small, fresh weeds,” says Elton. “There is limited opportunity to double knock as each paddock is sprayed roughly every 21 days.”
“This property is heavy grey cracking clay soil and melon hole country, so we have really noticed a difference in being able to access the paddocks with such a light machine much sooner after rain than is possible with a tractor,” said Elton. “Everything is centred on hitting weeds when they are very small and at their most susceptible to herbicide. This has resulted in a large reduction in the amount of chemical used.”
Another feature that Elton uses to enhance the efficacy of the pre-plant herbicide treatment is to slow Oscar down and increase the sensitivity of the optical detection to ensure that the very smallest of weeds are ‘seen’ and sprayed. This essentially saves them the cost of a pre-plant blanket knockdown.
Very clean fallow in the background compared to two passes that were missed due to an error in the robot’s instructions.
Winter weed control tactics
The Petersen’s winter cropping program is limited to growing chickpea, wheat and barley, so although they rotate the available chemistry, their options are restricted. When the opportunity arises they plant a summer crop followed by a winter fallow to target black oats and phalaris.
“We do one in-crop spray in wheat to target these grass weeds and are aware of the risk of Group A resistance in black oats, and a second in-crop spray is to control broadleaf winter weeds,” says Elton. “We use robust rates and ensure there are no survivors. A targeted winter fallow program would also go a long way to reducing the impact of herbicide resistance in black oats.”
Chickpea crops are now sown on the same 375 mm (15 inch) row spacing as the cereals, which is proving beneficial in both higher yield and weed suppression compared to the 760 mm (30 inch) spacing used previously in chickpea. Pre-emergent herbicide is applied ahead of chickpeas and in summer crops.
“We set our planting date to avoid frost risk and want to get the crop in as quickly as possible and have the option to use moisture seeking techniques in dry years,” says Elton. “You can’t overestimate the effect of canopy closure on weeds and evaporation.”
Resources

SwarmFarm: Targeting small weeds all year

Article
Case Study

Single family, Coonamble NSW

Tony and Sharon Single farm with Tony’s parents John and Mary, south east of Coonamble in northern NSW with views of the Warrumbungle Range.
Across the 4500 ha cropping area at ‘Narratigah’, the weed numbers are low as a result of the Single’s ‘farming moisture’ philosophy, which involves planting whenever there is sufficient subsoil moisture to establish a competitive crop on their heavy clay soils. Their location allows a mix of summer and winter cropping, so if there is an opportunity for a summer crop they take it, even if that might result in missing the winter crop.
Tony (left) and John Single use their Single Shot weed detecting drone to scout for and map weeds to create a prescription map for their tractor mounted boomspray.
“Farming moisture is our risk management strategy and it has paid off time and time again,” says Tony. “We are really farming with probability and by reducing our risk we have been able to maximise profits. If there is insufficient subsoil moisture we just don’t plant. This means we have very few failed crops and we take advantage of the intermittent winter fallows to run down the seedbank, particularly for winter-active grass weeds.”
Tony says the area has a slightly summer dominant rainfall pattern but rainfall is very variable. The main crops grown are wheat, chickpea and sorghum, along with any other crop that might fit a certain planting opportunity.
While their cropping decisions are very water responsive, there can be situations where the need for ground cover outweighs other considerations. This can occur after a chickpea crop and if they feel it is necessary, Tony and John will plant a crop just to produce stubble, knowing that the yield will most likely be low.
“Generally, if it is too dry to plant we will choose to fallow to build up the soil moisture profile knowing that this is the least-risk strategy and gives the best result in the long term,” says Tony. “We can effectively gain good weed control for the full 12 months through the use of cropping and fallowing in both winter and summer.”

Resistance status
Herbicide resistance is considered the biggest threat to their business even though they currently have resistant weeds well under control. Glyphosate resistance was first confirmed at ‘Narratigah’ in 2005 in annual ryegrass, and Tony and John are also aware of some small areas of glyphosate resistant barnyard grass.
“These are our most important weeds and keeping a lid on resistance is crucial to prevent them becoming limiting factors in our cropping choices,” says Tony. “We also have other weeds including milk thistle, fleabane, blow-away grass and feathertop Rhodes grass – the full suite of northern region weeds really.”
Tony says their efforts to consistently drive down the weed seed bank, and having regular winter fallows, minimises the impact of herbicide resistance on their business.
“Our weed seed bank is low and weeds do not dictate our cropping decisions,” he says. “Ryegrass has a relatively long growing season so we have ample opportunity to stop seed set through a winter fallow. There are also several chemical options for use with our spot spraying technology and new pre-emergent herbicide options too, along with cultural controls such as chipping.”
“We are more concerned about the implications of resistant barnyard grass, which washed in from up-stream. Barnyard grass has the ability to germinate and very quickly set seed, making it more difficult to contain.”
To avert the risk of more seed being deposited by overland flow, the Singles have constructed a number of diversion banks on the up-stream side of their cropping area to divert water.
Tony is also noticing ‘rate creep’ as weeds like milk thistle that are slow to metabolise herbicide, become harder to control. He says they are needing to use a higher rate of paraquat in the double-knock applications. The Singles are managing this through regular double-knocking in fallow and strategically using saflufenacil with paraquat to enhance control.
Black oats currently has a low resistance profile due to the use of winter fallows and fop chemistry is still effective in many paddocks.
The Singles use their proprietary drone weed mapping system ‘Single Shot’ to scout for and map weeds, helping them to better plan for and implement each herbicide application.
Their integrated weed management system is an excellent example of the WeedSmart Big 6 in practice.
#1 – Diversity in cropping
The combination of winter cereals, winter pulses and summer cereals provides many opportunities for controlling weeds pre-season and in-crop.
“The decision to plant sorghum is driven by weed and disease pressure in winter crops,” says Tony. “In a paddock that is becoming difficult to manage, we would rather change to sorghum than turn to a heavy reliance on pre-emergent herbicides and in-crop spraying of winter weeds in winter crops. Swapping to a summer crop gives us the opportunity to target problematic weeds using a winter fallow phase.”
This practice, plus the persistent drought in recent years, has resulted in more fallow area and allowed them to drive down the weed seed bank of annual ryegrass and black oats. It is now very rare for them to target grass weeds in-crop in winter cereals.
Using their drone and sensor to scout for and map weeds in the fallow periods has been a powerful tool to attack the weed seed bank in both summer and winter. Decoupling the weed detection and spraying operations opens up opportunities for more diverse weed control.
Tony and John can use the drone to map the presence of weeds just before, or soon after, significant rainfall events. Once they are able to get on the paddocks with the sprayer they can target previously existing weeds with spot spraying an effective herbicide mixture while applying a blanket rate to the new germination of weeds following the rain.
Knowing exactly what is in the paddock before they start spraying means they can consider a wider range of potential chemical options or techniques. Once the plan is made, they know how much product they will need and the cost. Knowing that they will only be treating say 5 ha in a paddock, they can afford to use chemicals that they would never consider for a blanket spray application.
#2 – Mixing and rotating MOA
Tony and John use some preemergent chemistry strategically in fallows to maximise weed control diversity while keeping their options open for cropping.
They aim to use a preemergent application to control key broadleaf and grass weeds after harvest, which takes the pressure off glyphosate without compromising planting opportunities the following autumn.
A combination of soil residual herbicides such as picloram, Balance and Flame has given good results early in the summer fallow, followed with a pre-sowing double knock of glyphosate and paraquat, giving a total of five chemical groups targeting fallow weeds. When it suits the program, they use chemistry mixes such as Sharpen + paraquat in the double knock, increasing the modes of action and increasing the efficacy of the treatment on the weed spectrum.
In addition to the use of preemergent chemistry, winter grass weeds are also targeted in broadleaf crops, usually with clethodim (Group A, Group 1), but the Singles are aware of the resistance risk and are looking to introduce Clearfield canola as alternative means of grass control in break crops, and to bring more diversity to their system.
Using their drone mapping technology, Tony and John can merge multiple flights of a paddock during the year into one map to show the location of all the weeds detected. This map can then be used to apply a site-specific soil residual herbicide for the next season to say 15 to 20 per cent of the paddock. In treating smaller areas, they can afford to consider chemistry that might otherwise be too expensive, add more diversity to chemicals used and reduce their plant-back risks.
#3 – Crop competition
The Singles consider crop competition to be their #1 weed control tactic, simply because it is the only one that provides season-long in-crop weed control.
“We do everything we can to maximise the crop’s ability to suppress weeds,” says Tony. “This starts at planting, where we have invested in planting gear with moisture seeking capability so we can plant crops on time and ensure good establishment. We take great care to ensure there are no gaps for weeds to exploit, and always square-off the headlands.”
Planting at 330 mm row spacing allows for inter-row sowing and stubble retention, and planting rates are chosen to maximise yield – with long-season wheat sown at 40 to 60 plants/m2, and later plant wheat sown at 80 to 100 plants/m2. The slope of each paddock dictates the tramline direction to be perpendicular to the overland flow, which results in most paddocks being sown north south.
For all crops Tony aims to achieve 100% knockdown prior to planting with a double knock treatment, followed with a well-established, vigorous crop.

#4 – Double knock
The Singles started using the double knock tactic twenty years ago in their winter fallows, and introduced it to summer fallows about ten years ago.
“The double-knock strategy hasn’t added significantly to our overall weed control costs,” he says. “When we first started using the double-knock we counted it as a direct cost to the system, but we now see the second knock with paraquat as a preemptive strike on future weeds – an investment in lowering the weed seed bank, and we are picking up savings with lower volumes of chemical required in subsequent weed control applications.”
The double knock tactic is now embedded in their weed management strategy and they have invested in spray gear to allow them to cover their area within the recommended 7 to 8 day window. Tony says the high level of control they achieve with the double knock means there are fewer and fewer weeds each year and this reduces the cost of the operation, particularly now they have the capacity to spot spray weeds with highly consistent weed detection.
“This tactic puts a significant dent in the weed seed bank and reduces the number of large and potentially stressed plants being sprayed,” says Tony. “This makes it a very effective resistance tool, particularly for our hard to kill weeds.”
#5 – Stopping seed set
The Singles are aiming for 100 per cent weed control in fallow, particularly for annual ryegrass and BYG, by managing paddocks in a site specific way at a square metre level using their drone scouting technology.
“The drone can effectively scout for weeds at a rate of 200 ha/hr, which makes it very quick and easy to scout a paddock and then go out and chip the five or so plants that might be left growing in a paddock,” says Tony. “This moves us closer to achieving 100 percent weed control. We have really driven down our weed numbers and significantly reduced the impact of herbicide resistance in our operation.”
Occasionally, Tony will drive along the tramlines in the side-by-side and chip out any grass weeds in chickpeas that have either escaped control or germinated late in-crop. Then prior to harvest, Tony and John look for any patches of weeds that have escaped control and take action to prevent seed set.
“If we find there is a patch of weeds getting away from us we don’t hesitate to sacrifice small areas of the crop to prevent seed set,” says Tony. “In 2020 we had a three or four hectare patch of ryegrass and decided to use a small slasher to mow the crop and weeds then sprayed the area with paraquat. That way we made sure the weeds did not set seed and prevented the spread of resistant weed seed at harvest.”
The Singles do not spray any selective herbicides outside their cropped area and prior to harvest they slash a 2 m width of crop along fencelines to stop the header bringing weeds into the paddock from the fenceline.
#6 – Harvest weed seed control
Several years ago, the Singles trialed narrow windrow burning for harvest weed seed control but decided that the negative effects outweighed the weed control benefits.
“For us, ground cover is supremely important for erosion control, reducing evaporation and increasing infiltration through the heavy clay soils,” says Tony. “We are watching the developments in impact mill technology and will most likely go down that path if we feel harvest weed seed control is needed in the future.”

Article
Case Study

Kurt Mayne, Rolleston Qld

Preserving the option for opportunity cropping is critical for Rolleston grain grower Kurt Mayne, but this means he needs to be careful with pre-emergent herbicides in his fallow weed control program.

Kurt and his family operate a 6000 ha mixed farming operation of dryland grain production and backgrounding steers for feedlots at ‘Broken Plains’, 13 km east of Rolleston in Central Queensland. They grow chickpea and wheat every winter and summer crops when the opportunity presents on the 1400 ha of farmed country previously used for finishing cattle on leucaena (AKA tagasaste).
Kurt Mayne bought a secondhand 36 m weedIT in early 2019 and can now spot spray their entire cropping area within two days.
Wanting to keep one step ahead of herbicide resistance, Kurt took the opportunity to join a GRDC Grower Solutions study tour that included attending the 3-day WeedSmart Week event in Narrabri in 2018.
He returned from the tour convinced that he needed to take extra steps to minimise the risk of herbicide resistance before it began to impact on his crop choices and profitability.
“Optical spraying technology was the tactic that really stood out for me on the study tour,” says Kurt. “We bought a weedIT boom soon after I returned from the trip and I have been impressed with the benefits that have come with the addition of an optical sprayer to our weed control program.”
“In our farming system it is hard to incorporate pre-emergent herbicides in the fallow because that can restrict our options for opportunity cropping over summer,” he says. “The optical sprayer makes fallow weed management much more effective, and when that’s combined with pulses in the rotation we are able to keep on top of grass weeds like feathertop Rhodes grass, which was getting increasingly difficult to manage.”
The main weeds at ‘Broken Plains’ are feathertop Rhodes grass (FTR), milkthistle and fleabane – all notoriously hard to kill in fallow situations. Kurt bought a secondhand 36 m weedIT in early 2019 and can now spot spray their entire cropping area within two days. He also uses a tow-behind sprayer for their broadacre spray applications.
Kurt says the pressure from FTR had led to an increasing need for cultivation to stop seed set and he saw that optical spray technology would mean he could reduce the amount and frequency of cultivation.
“We use the weedIT to spot spray weeds with a double knock of glyphosate plus a Group I [Group 18], followed with paraquat; targeting these hard to kill weeds when they are small,” says Kurt. “No residuals are used in fallow because they can limit our options for summer cropping particularly.”
“The aim is to keep the fallows weed-free so we have low weed numbers at planting,” he says. “Once a crop is planted we do use residuals to give it the best chance to grow ahead of any weeds that might emerge on the planting rains.”
The weedIT has markedly reduced the amount of chemical applied in the fallow and reduced the time needed to do an application across the cropped area. Kurt is finding it much easier to apply the double knock tactic for glyphosate within the optimal timeframe.
“Being able to get a proper double knock done when you need to, means you can get on with other jobs, knowing that you have done the best control treatment possible on the weeds,” says Kurt.
Crops and varieties are chosen to maximise yield potential and this also means there is maximum suppression on weeds. Their crops are sown on 50 cm row spacing in a 12 m controlled traffic system, except for sorghum, which is grown on 1.5 m spacing.
“We are basically farming moisture here, so if there is suitable rainfall we want to be in a position to take that opportunity to plant,” he says. “Sorghum and mungbean are the usual summer crop options, and we aim to be cropping for 10 months of the year if conditions allow.”
In drier years the winter crops are sown deep, about 15 cm, to access available moisture. Chickpeas are particularly well suited to moisture seeking planting techniques. Kurt grades his own chickpea and wheat seed to remove weed seeds and ensure that the largest and most vigorous seeds are planted. He buys in mungbean and sorghum seed each season to maximise seedling vigour and establishment, and ensure the seed is weed-free.
Chickpeas are particularly well suited to moisture seeking planting techniques. Kurt grades his own chickpea and wheat seed to remove weed seeds and ensure that the largest and most vigorous seeds are planted.
Kurt uses a tyned planter and a single disc for nitrogen application. He has recently embarked on a program to apply ‘deep P’ across the cropped area. The phosphorus is applied about three months before planting at a rate of 250 kg/ha MAP at a depth of about 30-45 cm using a dozer. He has been very impressed with the crop response to the phosphorus application, which has clearly demonstrated that low phosphorus levels have been a constraint on production.
The Maynes are seriously considering adding harvest weed seed control to their weed management program. Kurt sees real benefits in the chaff deck system that delivers the chaff onto the tram lines – both as a weed control tactic and a means of reducing the frequency of tram line renovation.
On the cattle side of their business the Maynes buy in about 1600 feeder steers and run them for less than 12 months on 2800 ha of buffel and leucaena pasture.

Article
Case Study

Messina family, Mullewa WA

Mullewa growers Andrew and Rod Messina have been on a long and dedicated journey of weed management. Their 12 thousand ha dryland cropping enterprise is based on a predominantly sandplain soil type and the region generally expects 250 to 350 mm annual rainfall, but seasonal variability is often a challenge.
The most recent innovations to be tested and adopted are real-time and localised herbicide application technology and impact mills for harvest weed seed control.
The soils and rainfall limit the Messina’s crop choices but they use the available options of wheat, canola and lupins to their best advantage for herbicide and non-herbicide tactics to keep downward pressure on the weed seed bank.
Mullewa farmer Andrew Messina says it’s amazing how quickly weed numbers come down after two or three years of integrated weed management practices, including harvest weed seed control. Photo: Fiona Mann
“We have been doing whatever we can to reduce the seed bank for weeds, and we’ve been doing that for a long time now, particularly with mouldboard ploughing and harvest weed seed management,” Andrew said. “Weeds rule broadacre farming, there are no two ways about that – weeds and rainfall.”
Over the years their efforts to reduce the weed burden across their controlled traffic farming operation have also included narrow windrow burning, chaff carts, autumn tickles, crop topping and double knocking glyphosate.
“We find that when we buy a new property it always has a lot of weeds but after two or three years of integrated weed management practices, including harvest weed seed control, it’s amazing how quickly weed numbers come down,” Andrew said.
Wild radish has always been the main weed challenging crop production on the Messina’s Spring Park Farms on the Eradu sandplain east of Geraldton. When herbicide resistant wild radish populations established on the farm the Messinas added pre-emergent to the in-crop herbicides in their weed management strategy.
In 2020 the family sold their collection of chaff carts and bought three Integrated Harrington Seed Destructors (iHSD) in anticipation of a harvest dominated by cereals across 10,000 ha. The impact mills performed well through the 2020 harvest and the Messinas are very pleased to have dispensed with burning chaff dumps for harvest weed seed control.
At the same time they have also moved into camera spot-spraying technology, initially for summer and fallow spraying but also for future potential for in-crop spot-spraying.
Teaching technology to recognise weeds
Their new 8000-litre Agrifac Condor Endurance II machine is equipped with weed-identifying cameras developed by French firm Bilberry, allowing for real-time weed detection and tailored herbicide application.
“To have mechanically driven weed destructing mills on our harvesters, and this camera technology … it’s the most exciting thing I have seen in my farming life,” said Andrew.
The system – called AiCPlus – uses optical cameras and microprocessors to identify weeds ahead of the 48-metre spray boom. Individual nozzles are then triggered as the boom passes overhead to spot spray the weeds. The cameras are fixed at 3 m apart, with each linked to the independent operation of nozzles within a set of 12 nozzles.
Green-on-brown is the only commercially available technology available for this machine at present, but the Messinas have been busy assisting the system’s developers to trial its green-on-green capabilities.
Arriving on farm in January 2020, a little later than expected, the Messinas used it to finish the summer weeds program on about 400 ha of their sandplain soils. Once the crops were planted, they then used it for nine days in young wheat crops in July and then again in August, traversing 14,000 ha at an average speed of 19 km/h.
AiCPlus uses optical cameras and microprocessors to identify weeds ahead of the 48-metre spray boom. Photo Fiona Mann
Its target was wild radish growing in paddocks of Scepter, Devil, Chief and Zen wheat. With each pass, the cameras captured images that depicted both the crop and weed at different times of day and under various light conditions. These images are being used to better inform the algorithm behind the technology. In 2021 the Messinas will be working with Bilberry to gather images to identify blue and white lupin in wheat crops.
For the trial, they had allowed the radish plants to grow to a size that the cameras could easily detect, approximately 10 cm2, with the sprayer first being put to work on a paddock with a high weed burden, something that they would not usually do.
In paddocks with high weed burdens, their aim is to knock out weeds early in their growth via a blanket spray, in a bid to conserve crop-available moisture. This would usually occur around the three-leaf stage in wheat.
Andrew expects the efficiencies from green-on-green technology to come in subsequent sprays that targeted the low number of radish plants from later germinations.
As a result of the family’s persistent weed-fighting efforts, most of their paddocks host only low densities of radish. In these paddocks, Andrew said a blanket spray would generally not be necessary.
Having the impact mills fitted to their harvesters gives the Messinas full confidence to be involved with the development of the weed identification and spraying technology because they know that any weeds that escape treatment will be destroyed at harvest.
“But when we were walking through the paddock, most of the weeds had been hit,” said Andrew.
The 48 m Agrifac sprayer runs on the same trams as the harvester rather than the trams used by their other sprayers. By going to a wider boom and operating at 19 km/hr they can get over the same area as their 36 m sprayers running at 26 km/h.
Addressing soil constraints
The family started exploring soil constraints in 2008, mainly to determine if soil acidity, aluminium toxicity or nutrient deficiencies were limiting yields.
Testing uncovered pH levels of around 5.3 to 5.5 at the surface and 4.4 to 4.6 at depth (30 cm). Non-wetting properties and compaction were also identified as potential limiting factors.
They then embarked on a liming and mouldboard ploughing program to adjust the pH, treat non-wetting and bury weed seed. Their soils now feature pH levels in the range of 5.5 to 6.2.
“For the past five years we have been deep ripping to depths of 60 to 70 cm prior to seeding wheat to maximise the ability of crops to access moisture and nutrition in the profile,” said Andrew. “We also spread two tonnes of lime per hectare ahead of the ripper every three years.”
The overall result is better soil, better crop competition and less weeds. Andrew says the deep ripping has the potential to bring weed seed back to the surface, but this has only been evident on the edge of tram lines in a couple of paddocks where brome grass has re-surfaced.
Stopping seed set at every opportunity
The Messinas aim to stop seed set at every stage of the crop production and weed life cycle.

Mouldboard ploughing and liming re-set the seed bank and removed soil constraints related to pH and non-wetting.
Deep ripping ahead of planting (autumn tickle) stimulates a germination of weeds that are treated with a knockdown herbicide or double knock. Deep ripping also opens up the sandy profile to accept soil moisture and incorporate lime every three years. This encourages roots to seek nutrients and moisture and sets the crop up to compete well with weeds and reach the yield potential for the season.
Pre-emergent herbicides are applied to give the crop a head start on weeds.
One or two post-emergent sprays are applied as required in wheat for wild radish control. The AiCPlus camera sprayer will change broadacre spraying into spot-spraying for this key weed.
Lupins and canola are crop-topped if required but crop-topping has not been necessary in recent years.
All crops are treated with harvest weed seed control. The Messinas have achieved excellent weed seed control since they began with windrow burning in 1997 then moved to chaff carts in 2012 and now use iHSD impact mills.
Summer spraying will now focus on spot-spraying with the AiCPlus camera sprayer.

This case study is based in part on an original article written by Ann Rawlings with permission from the Society of Precision Agriculture Australia (www.spaa.com.au) and other sources.

Videos

View all
Video
Video

WeedSmart Shorts: What considerations should be made for glyphosate tolerant canola?

 
Jump to a section

Simon’s client experience with RR Canola and decision-making process 00:27
What’s the decision-making process when it comes to growing a glyphosate tolerant variety over conventional/TT canola? 01:36
Herbicide strategy & resistance testing: 02:44
Timing of glyphosate sprays 05:02
Varietal performance 07:06
Broadleaf weeds 09:33
Dealing with survivors, WeedSmart Big 6 11:12
Desiccation & windrowing 13:48
GM canola marketing 14:46
On-farm storage 15:14

In this new segment, WeedSmart Shorts, our expert agronomists around the country interview experts on topics in a ‘Question and Answer’ video format.
Simon was kind enough to be our first guest and Jana covers lots of important points with him throughout the interview. Above, you can find what questions are covered if you’d like to jump to one of the specific topics highlighted.
Simon says there has been uptake by his clients of glyphosate tolerant canola in South Australia, but there has been a varied response.

“We are finding that some are wanting to try a paddock, some are wanting to sit back and see how it goes. So, it is probably very similar to what happened in Victoria when it rolled out there as an option,” he says.
South Australian farmers in the past have been able to control the weeds with the existing canola options they have, says Simon, but what they are finding now is there is an increase in clethodim resistance, particularly at higher rates and so that is what is likely to be driving the decision-making process around what other canola options are available, such as RR canola.
While it is exciting to have another option for SA growers, Simon says it is critical that growers know their ryegrass resistance status before committing to planting glyphosate tolerant canola.
“Testing is the backbone behind the decision making around canola options and so once we’re aware of what herbicides still work effectively, that’s where we’re able to make a good, informed decision.”
Simon said it was important to know what works on ryegrass across the whole spectrum of herbicide groups.
“An example is, I did some testing for a new client recently and one of his populations came back as 80% resistant to glyphosate. Now, had we not done that test and put glyphosate resistant canola into that paddock, we would’ve been facing a disaster, but because we had that information on hand, we knew what our options were and what they weren’t,” Simon says.
 
 

Video
Webinar

Considerations for pre-emergent herbicides with dry sowing

In this webinar, we focus on what factors influence the residual control of weeds by pre-emergent herbicides with a focus on Trifluralin, Sakura and new-to-market herbicides.
Join Chris Davey, YPAG and WeedSmart Extension Agronomist and Mark Congreve, ICAN Senior Agronomist as they assess the sowing issues in South Australia and discuss strategies on using pre-emergents.
Factors covered include

Soil type/texture
Rainfall forecast (after application)
Characteristics of the herbicide
Characteristics of the crop
Sowing time (tine vs disc) – sowing depth, speed, soil throw, stubble
Resistance status

GRDC Spray Application Manual
This Spray Application GrowNotes™ manual provides information on how various spraying systems and components work, along with those factors that the operator should consider to ensure the sprayer is operating to its full potential.
This manual focuses on issues that will assist in maintaining the accuracy of the sprayer output while improving the efficiency and safety of spraying operations. It contains many useful tips for your spray operations.

Video
Webinar

Farmer questions answered on Group G herbicides and optimum application temperature

In this follow-up to last year’s webinar on Group Gs, Dr Chris Preston, University of Adelaide, Professor of Weed Management and WeedSmart’s Greg Condon focus on farmer questions around Group G herbicide use.
They explain the new Group G chemistry in simple terms and address questions around what temperature range provides optimum herbicide efficacy.

Fact Sheets

View all
Fact Sheet

Changes to herbicide Mode of Action (MoA) names

The global MoA classification system is based on numerical codes which provides infinite capacity to accommodate new herbicide MoA coming to market, unlike the alphabetical codes currently used in Australia.
Farming is becoming increasingly global. Farmers, agronomists and academics around the world are now, more than ever, sharing and accessing information to assist them to grow crops, while managing sustainability issues such as herbicide resistant weeds. It’s important then that the herbicide MoA classification system utilised in Australia be aligned with the global classification system. This will ensure more efficient farming systems into the future and allow Australian farmers and advisors to access the most up-to-date information relating to managing herbicide resistance.
CropLife Australia is working with key herbicide resistance management experts, advisors and the APVMA to ensure farmers and agronomists are aware of the planned changes.
The numerical classification system should be fully implemented by the end of 2024.
You can find further information by reading the factsheet and visiting the CropLife website here.

Fact Sheet

Sustainable glyphosate use in winter grain cropping systems in southern Australia

The number of glyphosate resistant weed species present in winter grain crops, along fencelines and in irrigation channels in Australia.

You can reduce the risk of glyphosate resistance in weeds if you follow the recommended practices in this factsheet.

Fact Sheet

Sustainable glyphosate use in Australian vegetable production

The number of glyphosate resistant weed species present in Australian vegetable production systems is increasing.

You can reduce the risk of glyphosate resistance in weeds if you follow the recommended practices in this factsheet.

Fact Sheet

Sustainable glyphosate use on roadsides, railways, public utilities and parks

The number of glyphosate resistant weed species present on Australian roadsides and railway lines is increasing.

You can reduce the risk of glyphosate resistance in weeds if you follow the recommended practices in this factsheet.

Subscribe to the WeedSmart Newsletter