Articles

Here you’ll find case studies on farmers implementing Big 6 tactics, expert columns answering questions about weed control concepts and news updates on the latest information on herbicide resistance and weed control.

News

View all
Article
News

WeedSmart agronomist set to tackle high rainfall zone weeds

Every locality has its own spectrum of weeds, and growers face different opportunities and challenges regarding the control tactics they can employ. The WeedSmart Big 6 approach is a practical way to ensure that an integrated weed management program is put in place that disrupts weed seed production and the evolution of herbicide resistance. Commencing in January 2021, Jana Dixon has joined the WeedSmart team of extension agronomists, with a focus on applying the Big 6 to manage weeds in the high rainfall cropping systems of southern Australia – from Esperance in WA to south-eastern SA, Tasmania and south-western Victoria. Jana will add to the dedicated and experienced extension agronomists on the WeedSmart team with Peter Newman in the Western region, Chris Davey in the South, Greg and Kirrily Condon in the East and Paul McIntosh in the North. Jana Dixon has joined the WeedSmart team of extension agronomists, with a focus on applying the Big 6 to manage weeds in the high rainfall cropping systems of southern Australia – from Esperance in WA to south-eastern SA, Tasmania and south-western Victoria. Jana hails from the Mid North of SA, and began working at Pinion Advisory (previously Rural Directions) while she was studying agriculture at the University of Adelaide. She has been employed full-time at Pinion Advisory since January 2019 as an agribusiness consultant, based in Clare, and spends most of her time delivering agronomy and farm business advice to clients from a wide range of cropping regions in South Australia. Pinion Advisory is a foundation WeedSmart sponsor and Jana has been involved in two WeedSmart Week events already – the first as a participant and grower group organiser at the Horsham event in 2019 and then as the local organiser for WeedSmart Week 2020 in Clare. In welcoming her to the WeedSmart team, program manager Lisa Mayer says Jana brings energy, commitment and insight to deliver communications focussed on the southern region’s high rainfall regions. “Growers in the southern high rainfall zones are facing some serious issues with herbicide resistance influencing their farming decisions,” says Ms Mayer. “Jana will be engaging with agronomists, growers and researchers in each of the distinct high rainfall zones to understand the complexities and look for practical ways to apply the WeedSmart Big 6 in various cropping scenarios.” “We plan to deliver WeedSmart Week in Esperance, part of Western Australia’s high rainfall cropping zone, in August 2021 and Jana will play a key role in the planning and delivering of our annual 3-day flagship event.” Jana says her experience with the WeedSmart program has been very positive and she has been particularly impressed with the support the program has from all sectors of the grains industry. Newly appointed WeedSmart extension agronomist, Jana Dixon (green cap) leading discussions with farm visit host, Ben Marshman, Owen SA, and growers and agronomists attending WeedSmart Week 2020 in Clare. “I have spoken to many growers and agronomists who have found real value in the information that the WeedSmart program delivers,” she says. “For many it is as much about considering another operator’s philosophy on dealing with weeds, and taking a fresh look at their own systems, rather than just learning about a new tactic or the traits of a new herbicide in isolation from the big picture.” She says the high calibre of industry people who contribute their time and expertise to the program is testament to the value WeedSmart has to agribusiness, growers, agronomists and researchers alike. In taking on the responsibility for delivering information tailored for the high rainfall zones Jana says she is pleased to have an extensive network of contacts through Pinion Advisory, with offices in a number of high rainfall areas to provide easy access to local agronomists and growers. She is also aware that there are major differences in weed spectrums and farming systems in each high rainfall zone and plans to take full advantage of the opportunity this role presents to expand her understanding of different approaches to weed management. “The long and favourable growing season and the associated prolonged periods of weed germination, is a key factor that I see potentially impacting on a grower’s weed management strategies in these regions,” she says. “On the other hand, access to highly diverse rotations and a focus on crop competition are two strategies that can play an important role in achieving excellent weed management in these regions.” “I am keen to engage with anyone working and farming in the high rainfall zones to build my knowledge and understanding,” she says. “And to create opportunities to develop and extend the WeedSmart Big 6 strategies, both herbicide and non-herbicide, that work in each area and in different situations.” WeedSmart is the industry voice delivering science-backed weed control solutions with support from the Grains Research and Development Corporation (GRDC), major herbicide, machinery and seed companies, and university and government research partners, all of whom have a stake in sustainable farming systems. You an follow Jana on Twitter and keep up to date with the HRZ here.
Article
News

Weaponise sorghum crops to take out FTR and ABG

The common practice of planting sorghum on wide rows has made this crop notorious as a weak link crop that can allow key summer grass species to set bucket loads of seed. The take home message from four years of research at Narrabri, NSW and Hermitage, Qld, is that halving sorghum row spacing can halve weed seed production in both feathertop Rhodes grass and awnless barnyard grass. With investment from the GRDC, researchers from the University of Sydney and Queensland Department of Agriculture and Fisheries (DAF) have conducted a range of field trials to identify ways to increase the competitiveness of sorghum and summer pulses. Dr Michael Widderick, DAF principal research scientist says the findings from these field trials have shown that a change to narrower row spacing for sorghum greatly suppressed weed growth and seed production, without reducing crop yield. “This is very significant for sorghum growers who have struggled with controlling these grass weeds in wide-row configurations,” he said. “These weeds are difficult to control with herbicides and there are few chemical options available to growers to control grasses in a grass crop. Any non-chemical strategies that reduce seedbank replenishment are very valuable to growers.” Dr Widderick said sorghum is often grown on one metre row spacing with an expectation that the crop will have access to more soil moisture. A considerable downside to planting on the wider row configuration is that canopy closure does not occur, allowing weeds to proliferate in the inter-row. With soil moisture at a premium, there is nothing spare to waste on growing summer weeds. For a sorghum crop to be competitive against weeds it requires adequate stored soil moisture (or access to irrigation) to establish the crop and achieve canopy closure as quickly as possible. This is most reliably done at a row spacing of 50 cm and this trial demonstrated that row spacing did not significantly impact crop yield within a season.   Left: weeds growing uninhibited in the inter-row space of sorghum sown at 1 m row spacing. Right: Fewer weeds can establish when the canopy closes in sorghum sown at 50 cm row spacing. Two of the most difficult to control summer weeds, feathertop Rhodes grass (FTR) and awnless barnyard grass (ABG) can produce 40,000 and 42,000, seeds per plant respectively. Other studies have found these numbers could be even higher, so every effort to reduce seed production is worthwhile. Both these species have populations confirmed as resistant to glyphosate, and recently a population of FTR was confirmed to be resistant to haloxyfop (Group A). Including a poorly competitive sorghum crop in the crop rotation provides a weak link in any strategy to reduce the weed seedbank for these weeds, and potentially allows a blow-out in herbicide resistant biotypes, making future control in other crops or summer fallows very difficult. Dr Widderick said sorghum competitiveness across all seasons and both sites was increased with narrow row spacing (50 cm) and a plant density of 10 to 15 plants/m2. In the 2017/18 season at Hermitage, the researchers demonstrated that planting sorghum at a density of 10 to 15 plants/m2 reduced seed production of both weed species reduced by over 50 per cent compared to the seed production at the low crop density of 5 plants/m2. In the same season, cultivar choice, sorghum density (5, 10, 15 plants/m2) and row spacing (50, 75 and 100 cm) had no statistically significant effect on crop yield. Armed with this information, the 2018/19 sorghum trial at Hermitage was sown at a crop density of 10 plants/m2, and the effect of row spacing (50 cm and 100 cm) on weed production was measured. Biomass and seed production of ABG was reduced by 55 per cent and 65 per cent, respectively when the sorghum was sown at the narrower spacing. Similarly for FTR, the 50 cm row spacing reduced biomass and seed production by 48 per cent and 56 per cent, respectively. Graphs: Awnless barnyard grass (ABG) (left) and feathertop Rhodes grass (right) biomass and seed production as affected by sorghum row spacing at Hermitage, Qld 2018/19. Within each graph, different letters indicate significant (P<0.05) difference after pairwise comparison. Crop competition is a ‘free kick’ non-herbicide tactic in the WeedSmart Big 6 strategy to manage herbicide resistance in weeds. There is now solid evidence that growers can maintain crop yield and reduce summer grass seed production by planting sorghum crops at a density of 10 plants/m2 and a row spacing of 50 cm. There are some residual herbicide options for the control of these summer grass weeds in sorghum. However, their efficacy can differ greatly depending on the season and will rarely provide full control of FTR and BYG. A combination of residual herbicides and a competitive crop is likely to have an additive effect and reduce seed production on surviving weeds. This research project also demonstrated that mungbeans are more competitive on 50 cm row spacing, making any changes to seeding equipment worthwhile as it would suit the whole summer crop program in the northern region. Central Queensland sorghum grower experience Organic grain producers Paul and Cherry Murphy have always relied on crop competition as an integral component of their weed management program in all crops, including sorghum, at ‘Kevricia’, near Capella in Central Queensland. With many years of experience growing sorghum on 50 cm row spacing Paul says the suppressive ability of the closed canopy certainly reduces weed growth and seed set in-crop. “We have been working off a plant density of around six plants per metre square as a rule of thumb that seems to work in most seasons on our farm,” he says. “In seasons where soil moisture might be limiting we have seen higher density crops fall over, and so have leant towards the lower planting rate. But the 10 plants per metre square would certainly increase the competitiveness of the crop in seasons where there is sufficient moisture.” Paul is pleased to see researchers doing more work on row spacing and plant density, which is difficult to really tease out in commercial settings where there are too many potential variables. “In sorghum there is a complexity associated with plant density, tillering and row spacing that needs scientific trials like this to really determine the optimal combination for maximum yield and weed control in a variety of seasonal scenarios,” he says. This season Paul will be breaking with tradition and planting sorghum on wider row spacing as he now has a Garford camera-guided inter-row cultivator. He hopes the wider spacing will only be required for this season while he makes the adjustments required to have the machine suit their controlled traffic configuration. The Murphy’s inter-row cultivator is capable of working in crops planted on 50 cm row spacing once it has been adjusted to suit their CTF configuration. “Once we are ready to plant the winter crop I hope to be able to plant on 50 cm spacing again and still use the inter-row cultivator,” he says. “The cameras on the cultivator guide the alignment of the tynes to follow the plant row with a 1 cm accuracy, and can be used when the crop is 10 to 40 cm high.” As organic growers the Murphys don’t use any herbicides and so early weed control can be difficult, but this inter-row cultivator will help remove any weeds that emerge with the crop and then crop competition can suppress any later germinations. Other resources GRDC Update paper: Growing competitive sorghum and mungbean crops to suppress summer weeds  Creating stiff competition against summer weeds  Managing barnyard grass in summer crops and fallow 
Article
News

Run down the summer grass seedbank in mungbeans

With investment from GRDC, researchers led by Professor Bhagirath Chauhan at the University of Queensland, have shown that both windmill grass and feathertop Rhodes grass can greatly reduce yield in mungbean, yet both weed species retain a large portion of their seed when the mungbean crop is ready for harvest. This gives growers the opportunity to use several tactics to reduce the seedbank of these two species while growing mungbean. Professor Chauhan says that even at the most competitive row spacing of 50 cm, mungbean yield was halved when there were around 40 windmill grass plants/m2 or just 11 feathertop Rhodes grass plants/m2 growing in the crop. Feathertop Rhodes grass competes strongly and produces masses of seed if it gains a foothold in a mungbean crop. “The good news is that both species have a high level of seed retention at harvest because mungbean is such a quick growing crop,” he said. “This gives growers the chance to vastly reduce the amount of new seed entering the seedbank.” “Even though these weeds have high seed retention at harvest they also produce a huge quantity of seed,” he says. “At peak weed density in our field trials feathertop Rhodes grass produced over a quarter of a million seeds per metre square and windmill grass produced around 100,000 seeds per metre square. So, even if a small portion of this seed enters the seedbank it can still equate to a large number of seeds to potentially germinate the following spring.” Feathertop Rhodes grass is known to begin germinating in late winter and early spring, well before a mungbean crop is planted so every effort should be made to eliminate all flushes of this weed prior to planting mungbean. Haloxyfop is currently registered for fallow control of feathertop Rhodes grass ahead of mungbean production and can be used to reduce the weed burden prior to planting mungbeans in the most competitive configuration of 50 cm row spacing. To reduce the risk of Group A resistance, use a double knock in this pre-plant situation to control any Group A herbicide survivors of these difficult grass weeds. Paraquat is the usual chemical double-knock partner in these situations and should be applied to small, unstressed weeds within 7 to 10 days after the application of haloxyfop. Both these weed species can germinate close to the same time as the mungbean crop, so early weed control is essential to maximise yield and minimise early weed competition. Although these two grass species are susceptible to several pre-emergent herbicides, only flumioxazin (Valor) is registered for use in mungbean. This Group G herbicide can be applied at least two months pre-sowing to provide enhanced knockdown and residual control of feathertop Rhodes grass in mungbeans, taking care to follow the ‘critical comments’ to avoid crop injury. Extra emphasis should be put on ensuring the paddock is as clean as possible prior to planting mungbeans. Inter-row cultivation may be an option provided the young plants are not injured, as wounds can allow entry of diseases such as tan spot or halo blight. Clethodim applied before the mungbeans begin to flower will provide effective in-crop control of small, late germinating grass weeds. Mungbean crops are commonly desiccated prior to harvest using either Reglone or glyphosate. Both of these Chloris weed species are generally unaffected by these herbicides as mature plants, so the desiccation of the crop is unlikely to stop weed seed set. Mechanical options such as swathing are currently under investigation and may provide a more reliable way to stop seed set on these weeds prior to harvest. Professor Bhagirath Chauhan, University of Queensland, says windmill grass and feathertop Rhodes grass both retain a large portion of their seed at the time of mungbean harvest, making harvest weed seed control an practical option to help reduce the weed seedbank. “Mungbean is a good candidate for harvest weed seed control, using chaff lining, impact mills and the like, because the crop is harvested at ground level so any weed seed held on the plants should enter the harvester front,” says Professor Chauhan. The WeedSmart Big 6 approach to help manage resistant and hard to control weeds combines the power of multiple tactics throughout the year and across a full crop sequence to reduce weed seed set. Although feathertop Rhodes grass and windmill grass both produce vast quantities of seed, the seed is very short-lived. If left on the soil surface the seed remains viable for only one to two years. All efforts to prevent seed set will be rewarded with a rapid decline in the weed seedbank for these two difficult grasses. GRDC has recently updated the ‘Integrated weed management of feathertop Rhodes grass’ manual, which provides detailed information on the ecology of this important weed, along with the tactics and strategies that can be used throughout a cropping sequence to manage the seedbank. Other resources Giving summer legumes the competitive edge FTR grass demands attention to stop seed set  Creating stiff competition for summer weeds GRDC manual: Integrated weed control for feathertop Rhodes grass 2020 update
Article
News

Cover crops can swamp fallow weeds

Whether they are resistant to herbicide or not, weeds generally do not compete well with vigourous crops, but in the fallow they can rapidly take advantage of the lack of competition for resources. Department of Agriculture and Fisheries researcher, Dr Annie Ruttledge has been running experiments at Kingaroy to investigate the benefits of bringing crop competition into the fallow phase of cropping systems in southern Queensland. Dr Annie Ruttledge, Department of Agriculture and Fisheries, Queensland weeds researcher is conducting trials to identify cover crop species suited to southern Queensland that have weed-suppressive traits. With investment from GRDC the cover crop project, led by Charles Sturt University, is investigating the weed-suppressive power of various cover crop species suited to either summer or winter fallows at three locations in the northern grain growing region – Kingaroy, Narrabri and Wagga Wagga. At the Kingaroy site, both winter and summer-growing cover crops were shown to suppress weeds by over 85 per cent and up to 95 per cent, compared to an untreated fallow where the sown weeds were not inhibited by a cover crop. While this level of control is worthwhile on its own, it is also backed up with either a chemical or non-chemical tool to terminate the cover crop and kill any survivor weeds. “In winter in Kingaroy, the best cover crops for weed control were grazing oats and tillage radish,” says Annie. “These species provided early season ground cover and suppressed our mimic annual grass weed, Italian ryegrass, by up to 94 per cent relative to the weeds-only fallow. None of the cover crop species we tried were able to suppress the quick-growing mimic broadleaf weed, Oriental mustard.” Winter-growing cover crop monocultures and mixtures. In summer, Annie says the best cover crop options for Kingaroy were white French millet, Japanese millet, forage sorghum and buckwheat. Again, early-season biomass and ground cover was the key to suppression of both grass and broadleaf weed mimics by up to 95 per cent when compared to the weeds-only fallow. Summer-growing cover crop monocultures and mixtures. So far in this trial, there has been no measurable weed suppression benefit in sowing mixed species cover crops rather than monocultures. However, a mixed species cover crop may be preferred if a grower is wanting to achieve multiple outcomes. For example, grazing oats may be selected as a fast growing and highly competitive species and teamed with a less competitive legume to boost soil nitrogen stores. “Obviously, the species selected will depend on the growing region and soil type,” she says. “Cover crops also provide many other services to the farming system and so the grower could select a cover crop species, or mix of species, that would also provide a break from disease or insect pressure, increase moisture infiltration, build up organic matter or break down compaction.” Source: Charles Sturt University Cover crops are an extension of the WeedSmart Big 6 tactic of providing crop competition to suppress weed growth and reduce the weed seed bank in an integrated weed management program. Annie says that light interception is a critical driving force in the effectiveness of cover cropping for weed control. In selecting cover crops for weed suppression, choose species that grow well in your locality and that restrict light penetration to the soil through strong early growth and the development of a dense canopy. For greatest benefit, terminate cover crops at maximum biomass, which should coincide with the beginning of flowering; however, earlier termination may be required if soil moisture is limiting. There is a large body of research work now underway to investigate other aspects of incorporating cover cropping into farming systems in various regions. While this work focuses on weed suppression, other researchers are looking into soil water and nutrient use efficiency under different conditions and in various cropping systems. Other resources Summer cover crops video DAF Day family case study Cotton cover crops Cover crops research update video presentation GRDC Update paper – Cover crops to provide groundcover in dry seasons
Article
News

Hit your target when spraying

The three things that the spray operator can and must control are nozzle choice, boom height and ground speed of the spray rig. Recently, there has been plenty of attention on some of the new technologies involving weed detection and artificial intelligence (AI), and companies like Goldacres are keen to deliver these to growers as they come to market, but their sales and marketing operations manager, Stephen Richards says the technologies behind effective and reliable droplet delivery to the target remain central to their spray rig designs. Goldacres sales and marketing operations manager, Stephen Richards says the technologies behind effective and reliable droplet delivery to the target are central to their spray rig designs. “At the end of the day, if the droplets of product don’t hit the target at the required rate you might as well have left the spray rig in the shed,” he says. “The best way to ensure the correct dose is applied and avoid spray drift is to pay close attention to setting the rig up correctly and operating it well.” In the last 20 years there has been a quiet revolution in nozzle design and much of this has been driven by the need to eliminate the risk of spray drifting downwind or being caught up in temperature inversion layers. “Years ago the standard nozzle was the XRT-jet flat fan nozzle that operated at a pressure of 1 to 4 bar, which gave good coverage in ideal spray conditions, but also produced more fine droplets that easily drift,” says Stephen. “Modern nozzles have been designed with the emphasis on producing medium to coarse droplets and using higher water rates to achieve adequate coverage.” The modern nozzles also have a wider pressure range of 1 to 6, or 1 to 8 bar, making the one nozzle type suitable for a variety of applications. When considering ground speed, Stephen says the technologies behind even rate delivery through the boom have made it possible for machinery manufacturers to build sprayers that can operate at higher speeds and cover more area in a day. “The Goldacres self-propelled sprayers have had a 3-tier nozzle system for about 20 years, where the first set of small nozzles come on when the machine is operating at 5 to 10 km/hr then the second and third sets activate when the machine is operating at higher speeds,” he says. This ensures that the correct product rate is applied at the headlands and wherever the operator needs to slow down. Another option is the ‘pulse width modulation’ system to adjust the volume through the nozzles in response to changes in ground speed. “Pulsing is particularly good for turn compensation with a large boom, where nozzles near the outside tip are typically moving twice as fast as nozzles near the machine,” says Stephen. “This means product would be under-applied at the tip and over-applied near the centre. Consistent under-dosing of herbicide is a particular risk in the evolution of herbicide resistance.” As boom length increases so does the need for high tech suspension and rate compensation for variable speed and turning. The boom height is also critical in reducing drift risk associated with the air turbulence behind the spray rig. A 20 cm change in height from the recommended 50 cm above ground to 70 cm can quadruple the quantity of air-borne droplets. “With booms now as wide as 48 m the suspension system is more important than ever,” says Stephen. “Goldacres machines use a system that minimises yaw, roll and pitch of the boom to give a stable spray platform and optimise spray coverage in undulating or uneven paddocks.” Before heading out to spray Stephen recommends operators check for blocked nozzles and at the start of each season, do a jug test to check for nozzle wear. The large investment in spray technology can be undone if nozzle choice and maintenance is neglected. “The jug test needs to show that each nozzle is delivering within 10 per cent of the nominated volume per minute for the specific nozzle type and size,” he says. “The cost of a new set of nozzles pales in significance against the cost of product wastage, a spray failure or the evolution of herbicide resistance on your farm.” Before heading out to spray Stephen recommends operators check for blocked nozzles and at the start of each season, do a jug test to check for nozzle wear. The WeedSmart Big 6 tactics that form an integrated weed management program to reduce the risk of herbicide resistance in weeds are supported by companies like Goldacres, who understand the importance of effective and safe herbicide application. Goldacres is working with Bilberry to perfect the artificial intelligence systems required to bring green-on-green weed detection to Australian farmers. These systems, along with the optical spraying technology that has been used for spot-spraying in fallows for over 20 years, are expected to deliver more targeted herbicide use into the future.
Article
News

Keeping glyphosate resistance rare

This has been the key message of weed management experts in Australia ever since 1996, when Australia’s worst weed, annual ryegrass, was found to be resistant to our most useful herbicide, glyphosate.   A few years later, the Australian Glyphosate Sustainability Working Group (AGSWG) was set up under the CRC for Australian Weed Management (Weeds CRC) to bring together commercial and research expertise from around the country with a determination to ‘keep glyphosate resistance rare’. With investment from the Grains Research and Development Corporation, AGSWG established a database of confirmed cases of glyphosate resistance in Australia and developed information products for all users of this important weed control tool. After guiding growers and agronomists through a critical 15 years of managing glyphosate resistance in Australia the AGSWG has been disbanded, however the work of advising farmers and other weed managers will continue. Keep weed numbers low and do everything you can to prevent resistant weeds from setting seed. Australian Herbicide Resistance Initiative (AHRI) director, Professor Hugh Beckie, says glyphosate means so much more than weed control to Australian farmers, particularly for dryland cropping. “This herbicide has been the means of achieving incredible productivity increases in dryland crop production, initially providing an alternative to tillage for fallow weed control and thus conserving soil moisture over summer,” he said. “It is also now used as a broad spectrum knockdown pre-seeding and post-harvest in many crops and in RoundUp Ready cotton and canola.” “As predicted, the incidence of glyphosate resistance is ramping up, having been heavily relied on for weed control since its introduction to Australia in 1976,” said Prof Beckie. “It is important to understand that glyphosate is not only used extensively on farms but also along roadways, fence lines, railway lines, in public parks and in home gardens. This means that resistance can, and does, evolve in many different settings and can move across the landscape in weed seeds and pollen.” According to the International Herbicide-Resistant Weed Database there are currently 20 species and thousands of populations known to have evolved resistance to glyphosate in Australia.    While this is a serious situation, and glyphosate resistance can no longer be considered ‘rare’, it is still possible to regain control of weed populations that have evolved resistance. One of the useful products that AGSWG published was a series of factsheets outlining the practices that should be followed and those that should be avoided. These factsheets have recently been updated and published on the WeedSmart website. There is a factsheet for each of the main glyphosate user groups – grain producers, cotton growers, horticulturalists, orchardists and vinegrowers, irrigators and managers of public lands and utilities. While the principles remain the same for all industries, there are some practical variations in implementation. Using a diverse weed control program and taking care to apply glyphosate in the optimal way can tip the scales in the grower’s favour and keep this valuable product as an option well into the future. Download glyphosate factsheets Northern grains and cotton factsheet Winter grains and irrigation factsheet Orchards and vineyards factsheet Roadside and railways factsheet Vegetable production factsheet

Ask an Expert

View all
Article
Ask an Expert

What alternatives are there for desiccation and crop topping?

Desiccation and crop topping with pre-harvest herbicide application is a useful way to reduce seed set in late germinating weeds and is an effective harvest aid for cereal grain, pulse and oilseed crops.  Given the scrutiny that glyphosate is currently receiving Paul McIntosh, WeedSmart’s northern extension agronomist, says it may be a good time to start looking for alternative means of reducing weed seed set prior to harvest and avoiding any potential issues with market access. WeedSmart’s northern extension agronomist, Paul McIntosh has been investigating alternatives to glyphosate as a desiccant in mungbeans. “Currently, there are five herbicides registered for late season use in a variety of crops,” he says. “Glyphosate and diquat (or Reglone) are registered for use in wheat and barley in some states, canola, chickpea, lentil, faba bean, field pea, mungbean and soybean. For some of these crops, growers are also able to use paraquat, metsulfuron methyl or saflufenacil (Sharpen).” Although there are many benefits to the practice from a weed control perspective, there are also market forces at play that could curtail the future use of pre-harvest herbicides.    “It might be a good time for growers to re-visit some of the non-herbicide options for reducing seed set,” says Paul. “One possibility is to trial swathing in pulse crops like chickpeas, faba beans and mungbeans. Early commercial scale trials suggest that it could be very effective and could also have the additional benefit of hastening crop maturity, bringing harvest forward.” “In combination with harvest weed seed control, swathing is a valuable WeedSmart Big 6 tactic to manage the weed seed bank,” he says. “Swathing adds another non-herbicide tool to a diverse program, particularly for pulse crops that are often not very competitive, and for weeds that typically shed seed before the crop is ready to direct harvest.” Are there other herbicide options for crop desiccation if the current products are banned? In brief: Not really. In most instances, glyphosate is the most effective crop desiccant product. The details: Glyphosate is already a key component of cropping systems, particularly in no-till systems. In crops like mungbeans that have semi-indeterminant maturity traits that make them want to keep on growing, glyphosate applied at the label rate can give mixed results. The Australian Mungbean Association recently commissioned weeds researcher Dr Bhagirath Chauhan, QAFFI to investigate the efficacy of a range of possible alternatives to glyphosate as a desiccant, but there were no stand-out herbicide candidates. This small plot trial also included the non-herbicide option of swathing, and the results were very promising.   Has anyone trialed swathing commercial mungbean crops? In brief: Yes. A grower on the Darling Downs trialed swathing two mungbean crops in March and April 2020, the first being 0.4 ha within a larger paddock that was desiccated with herbicide, and the second was an 8 ha block. The details: These two trial paddocks were very successful and the grower was encouraged by the yield and grain quality of the swathed areas. This has generated significant interest from other growers and agronomists in the northern grains region. The crops were swathed at the standard 90 per cent physiological maturity, the same timing used for chemical desiccation in mungbeans. Harvest was delayed in the 0.4 ha block due to two falls of rain, 12 mm and then 18 mm, which meant the windrows remained in the paddock for 14 days. The crop produced 1.6 t/ha of reasonable quality grain with no evidence of dust. Picking up the mungbean windrow after a two week delay due to wet weather. The crop in the 8 ha block was shorter and sparser than the small trial block. Four days after this block was windrowed it was harvested with a Smale pea front at the correct moisture, suggesting that low yielding crops with reduced dry matter could be harvested earlier. The crop yielded just below 1 t/ha of excellent quality grain, with very few pods being left on the ground. What are the potential benefits and costs of swathing? In brief: The costs will be very similar to chemical desiccation and there could be extra benefits as the practice is fine-tuned. Swathing and windrowing costs around $35 to $40 per ha, similar to chemical desiccation, but the operation may take more time. The details: The first benefit is the avoidance of pre-harvest chemical application, removing the potential for desiccant chemical residues in the grain. The second big benefit is that it may be possible to bring harvest forward. Even if swathing is done when the crop is 90 per cent physiologically mature, the same as for chemical desiccation, the crop can be harvested within a few days and could be off the paddock nearly two weeks earlier than a desiccated crop. The clincher is the possibility of swathing before the crop reaches 90 per cent maturity. If this can be done without compromising grain size and quality, it could have very significant benefits for weed control. Many weeds in the northern cropping region set seed before traditional desiccation and harvest time and so if the crop can be cut earlier there is a chance that less weed seed will mature. Weed seed heads present in the mungbean windrow. It is early days for the revival of swathing in the northern cropping region and there are many things to be tried and tested. Early successes have also been seen in sorghum, faba beans and chickpeas.
Article
Ask an Expert

How can I be certain that herbicide residues in the soil have fully degraded at planting?

In the course of a chemical fallow there are often several applications of herbicide and some residues may still be present on or near the soil surface when it is time to plant the next crop. In particularly dry years, residues may even carryover from the crop prior to the fallow. NSW Department of Primary Industries soil scientist, Dr Mick Rose, says there has been concern in recent years about the effect these residues may have on soil microbial activity and on the establishment and growth of crops following the fallow, even after the plant back period. Dr Mick Rose, DPI NSW soils researcher, is developing tests and predictive models to support growers in their decisions about crop choice after using residual herbicides. (Photo: GRDC). “Glyphosate has been the most commonly used knockdown herbicide in northern fallows for several decades and more recently growers have been looking to use more diverse programs that include chemicals with residual activity on weeds,” he says. “The increased use of imazapic and diuron have been of most concern to growers when choosing the next crop, particularly after a low rainfall fallow period.” With investment from GRDC, Mick has been working on a project led by Dr Michael Widderick from the Department of Agriculture and Fisheries, Queensland to develop a soil test for imazapic and diuron residues that will indicate damaging residue levels and help growers to decide which crops would be safe to plant in a paddock. “We are determining the threshold levels of residues of these two herbicides at which crop damage is likely for six crops, both winter and summer growing, in a range of soil types,” he says. In earlier work he also looked at the level of glyphosate residue in soils around the country at planting time and the impact these residues have on soil biological processes. “We found that residues of glyphosate were commonly detected in the soil at planting but there was no indication that the herbicide was adversely affecting soil biological activity,” says Mick. “This suggests that the label recommendations are suitable and the proper application of glyphosate in Australia is not posing a threat to soil health.” “For growers to be able to keep using glyphosate they need to implement the WeedSmart Big 6 strategy, including using diverse chemistry in fallows,” he says. “Residual herbicides are a useful tool for growers but there are some gaps in our knowledge about how these herbicides break down in different soils and under different seasonal conditions.” Why not just follow the plant back recommendations on the label? In brief: The label provides the minimum plant back period provided certain environmental conditions are met. There is a possibility of crop injury even though plant back periods are observed. The details: Many factors affect the bioavailability of a herbicide in the soil. For example, even though a clay soil and a sandy soil might have similar residue levels, more herbicide will be available for uptake in the sandy soil. More rain will increase the rate of breakdown, but it is not known exactly how much rain will ensure the specific soil is ‘safe’ to plant into. Another important factor is that many things can contribute to a germination failure. In some situations, residual herbicide may be suspected as the culprit, but can be difficult to either rule it in or out with certainty when diagnosing the reason for a problem at planting. If herbicide residues in the plant tissue can be shown to be phytotoxic, then another, less susceptible crop could be sown into the paddock. Dr Annie Ruttledge, DAF Qld weeds researcher, inspecting chickpea plants growing in soils containing different levels of imazapic and diuron herbicide residue. What effects can herbicide residues have on emerging crops? In brief: The herbicide itself can inhibit germination and growth, or it can exacerbate other factors, such as root disease. The details: At different levels of bioavailability, herbicide residues will have different effects on crop plants. If the herbicide is readily available to the plant, then susceptible crops will take it up from the soil and it can have phytotoxic effects ranging from suppressed vigour to yellowing and potentially plant death. Testing the plant tissue of a struggling crop can show if the leaves contain sufficient herbicide to have caused the observed symptoms. Some herbicide residues in soil can also ‘prune’ plant roots, particularly the fine roots that help access moisture and nutrients. Obviously, if the young plants are struggling to access resources then they will be less vigorous and possibly die. Damaged roots are also more susceptible to water stress, disease and poor nodulation in legumes, making it difficult to determine the initial cause of the problem in the field. If herbicide residues are shown to be the problem then a more tolerant crop can be sown, speeding up the breakdown of the residue and there will be more rainfall events before the next cropping season comes around. Seedling emergence and establishment is being measured for six crops (winter and summer) in the presence of different levels of herbicide. What pre-planting soil tests are being developed to give growers confidence to plant? In brief: The current project is establishing phytotoxicity thresholds for six summer and winter crops in a range of soil types, for two herbicides – imazapic and diuron. The details: By mid-2021 the aim is to have established the thresholds so that soil could be tested pre-plant to determine what crops would be safe to plant. This will give growers confidence to use these herbicides in a diverse strategy to manage weeds like feathertop Rhodes grass in the fallow, while avoiding germination or establishment failures in the following crop. Spray records play an important role in the management of these herbicides and mistakes can easily be made if the spray history for the past several years is not taken into account. In time, growers and their agronomists will gain a better understanding of how these herbicide residues behave in the soils on a particular property and will be able to make herbicide application and crop rotation decisions with more confidence. In another project with the Soil CRC, Mick is developing a predictive model for herbicide breakdown for a wider range of herbicides used in southern and western cropping systems. Until these tests and models become available, the use of an in-field or pot bioassay with a susceptible crop can be helpful in determining potential plant back issues.   Related resources Herbicide residues in soil – the scale and significance (GRDC Update paper) Herbicide residues in soil (GRDC Podcast)
Article
Ask an Expert

What’s next in controlling herbicide resistant broadleaf weeds?

PBA Kelpie XT is the fifth lentil variety released with tolerance to Group B herbicides, imazamox and imazapyr, along with one IMI-tolerant faba bean. University of Adelaide weeds researcher and PhD candidate, Alicia Merriam, says resistance to the IMI herbicides and other Group B chemistry, particularly the sulfonylureas (SU), is making control of some broadleaf weeds very difficult. University of Adelaide weeds researcher and PhD candidate, Alicia Merriam says screening has shown resistance to IMI herbicides in over 75 per cent of populations of both weeds collected in random weed surveys in South Australia. “Imi-tolerant lentils have been very popular with growers and have increased the weed control options in this important crop, but resistance in sowthistle and prickly lettuce is very widespread in the southern region,” she says. “Screening has shown resistance to IMI herbicides in over 75 per cent of populations of both weeds.” With investment from GRDC and an Australian Government Research Training Program Scholarship, Alicia conducted a trial at two sites in South Australia to investigate options to implement the best practice recommendation for lentils – to control weeds in the preceding wheat crop and again at sowing or crop emergence in the lentils. Both sowthistle and prickly lettuce are renowned for their prolific seed production when growing in non-competitive situations and wind dispersal of seed enables recruitment of resistance from crop borders, and far beyond. Consequently, eradication is not a realistic proposition. “Sequencing the gene that controls resistance to Group B herbicides has uncovered a large variety of different mutations in these species across the Mid North and Yorke Peninsula in SA,” says Alicia. “Most mutations of this type cause SU resistance, but some cause IMI resistance and the effect can vary between weed species. Crucially, we found all these mutations within a single grower paddock, which shows that they are widely distributed.” “Crop rotation and increased crop competition are essential components of the WeedSmart Big 6 to help run down the seed bank and suppress seed production by all means available,” she says. “Herbicide tolerance in pulse crops is a useful tool when coupled with strong competition and other herbicide options in as many crops as possible in the rotation.” What is the current resistance status of sowthistle and prickly lettuce in the southern region? In brief: Widespread resistance to Group B SU and IMI chemistry exists in both these broadleaf weeds. The details: In surveys conducted in the Mid North and Yorke Peninsula regions the percentage of SU-resistant populations of prickly lettuce increased from 66 per cent in 1999 to 82 per cent in 2004 and 100 per cent in 2019. The populations screened in the 2019 survey were all resistant to Group B IMI chemistry. Sowthistle surveys in the Mid North and Yorke Peninsula have found SU resistance in 89 per cent of populations and IMI resistance in 76 per cent of populations. Surveys also show that Group B resistance in sowthistle is very common across the rest of the southern cropping region. Sample populations screened with SU and IMI herbicides where Population 1 is susceptible to SU and IMI herbicides, Population 2 is moderately resistant to SU but susceptible to IMI herbicides, and Population 3 is resistant to both these Group B herbicides. Did crop competition or herbicide treatments affect weed seed production in the wheat phase or weed numbers in the following crop? In brief: The herbicide treatments used in the 2018 wheat crop had an impact on the sowthistle population in the next crop, but had little effect on prickly lettuce. Crop competition treatments did not reduce weed density in the following growing season. The details: The weed populations at both sites were confirmed resistant to Group B herbicides but susceptible to glyphosate. The three in-crop treatments were 1. no in-crop herbicide, 2. ‘conventional’ herbicide application of metsulfuron-methyl (Ally) + MCPA and 3. ‘proactive’ herbicide application of bromoxynil + picolinafen + MCPA (Flight EC). Two levels of crop competition (seeding rate 60 and 90 kg/ha) were also applied. In the 2018 wheat crop the proactive treatment gave the best control of sowthistle in that crop and this resulted in a reduction in numbers in the 2019 crop. Although the conventional treatment provided some weed control benefit in the 2018 crop, the benefit did not flow on to the next crop, probably because the sowthistle population was resistant to the residual action of the metsulfuron-methyl component of the conventional treatment. The herbicide treatments both reduced prickly lettuce density better than the untreated option but there was no additional benefit from the more expensive proactive treatment in either the year of application or the following crop. Crop competition is a well-established practice for reducing weed seed production, so it was surprising to find that increased crop competition did not reduce weed numbers in the following year. This could be due to conditions in the year of the trial and the mobility of seed of these species. In less competitive situations (right) sowthistle and prickly lettuce produce vast quantities of seed whereas in competitive situations (left) seed production is considerably reduced. What’s the take-home message for using herbicide tolerant lentils in the rotation? In brief: Herbicide tolerant crops are an important tool but must complement a diverse arsenal of weed control tactics. Short rotations are a very risky option and will lead to yield-reducing numbers of these prolific seeding weeds. The details: Sowthistle and prickly lettuce can be expected to become increasingly difficult to control in the lentil phase. Neither crop competition nor proactive herbicide regimes alone are likely to provide sufficient downward pressure on these weeds in a short rotation. Building in a longer break away from lentils is likely to be a more effective strategy. The number of different resistance mutations found in the cropping regions of the Mid North and Yorke Peninsula show that Group B resistance is widespread, and here to stay. This highlights the importance of diversity in crop and herbicide groups rotations, including the strategic use of herbicide tolerant crops. The new Group G herbicide Reflex, with planned registration for IBS (knife point press wheel) application in lentils, will also be a welcome addition to improve weed control options in this crop. Further resources Common sowthistle and prickly lettuce in lentil crops of southern australia – Managing herbicide resistance and highly mobile resistance genes, GRDC Update paper Feb 2020  
Article
Ask an Expert

Is HWSC useful against weeds that shed seeds early?

Many weed species shed seed before the grain crop is ready to harvest, so you might expect harvest weed seed control to be fairly ineffective against such weeds. WA’s Department of Primary Industries and Regional Development weeds researcher, Dr Catherine Borger, says it might surprise many people just how much harvest weed seed control can impact the seed bank of notorious early-shedders like great brome grass and barley grass. Dr Catherine Borger, DPIRD examined great brome and barley grass emergence and shedding times in controlled conditions at Northam WA to better understand the ecology of these weeds and the value of harvest weed seed control (HWSC). Dr Catherine Borger, DPIRD examined great brome and barley grass emergence and shedding times in controlled conditions at Northam WA to better understand the ecology of these weeds and the value of harvest weed seed control (HWSC). “What we found in our studies of several populations of these two weeds in WA and SA is that firstly there is a lot of variability in how these weeds behave in different seasons, and secondly, even relatively low levels of weed seed capture at harvest can make a big difference to reducing the weed seed bank,” she says. This research is part of a national GRDC investment in better understanding the ecology of key weed species in each region. “Great brome grass and barley grass cost farmers in the Southern and Western cropping regions around $22 million and $2 million annually respectively, in control costs and lost production,” says Catherine. “Great brome grass and barley grass are problematic weeds on 1.4 million ha and 235,000 ha of farming land respectively across these two regions. Consequently, farmers are spending over $3 million a year on additional herbicide costs to manage herbicide resistant great brome grass.” The weed ecology work on these two species showed that an integrated control program can effectively run down the seed bank for both these species in three or four years and that staggered emergence, particularly in brome grass means that end of season control tactics must be included in the strategy. “The WeedSmart Big 6 is a useful planning tool because managing the weed seed bank requires a range of tactics to be implemented at different times through the year,” she says. “A combination of herbicide and non-herbicide tools used at strategic times will have the best chance of getting weed numbers down and keeping them low.” What do we know about seed retention at harvest for these two weeds? In brief: In some years it is quite low but in other years a large proportion of the seed is still in the seed heads at harvest and beyond. The details: Seed shedding is not well understood and is driven by a complex combination of genetic and environmental factors. Harvest date obviously has a large bearing on the amount of weed seed still on the plants at harvest. In paddocks with high or increasing weed numbers it may be worth harvesting as early as possible to maximise the benefit of HWSC. In 2016 to 2018 great brome seed retention at the Wongan Hills site in WA was between 40 and 70 per cent at crop maturity (around mid-November). A later harvest date in 2016 resulted in almost no seed being present on the plants at harvest. Similarly, for barley grass – in 2016 all the seed shed by harvest in December, and in 2017 and 2018 seed was still on the plants well into summer. Great brome grass retains a proportion of seed at crop maturity and even capturing 20 to 40 per cent of the weed seed through HWSC can make a big difference to the weed seed bank. Great brome grass retains a proportion of seed at crop maturity and even capturing 20 to 40 per cent of the weed seed through HWSC can make a big difference to the weed seed bank. Do you recommend HWSC as a useful control tactic for great brome and barley grass? In brief: Yes, particularly for the highly competitive great brome grass. Even capturing 20 to 40 per cent of the weed seed produced can make a big difference to future weed pressure. The details: It is difficult to manage weeds that exhibit staggered germinations during the cropping season with herbicides alone. Both these weeds can be difficult to get into the harvester – great brome can bend forward and slip under the cutter bar while barley grass seed heads are often held very close to the ground. While barley grass might be almost impossible to get into the header it is also much less competitive in the crop than great brome. Modelling with the Weed Seed Wizard decision support tool showed that if the header is able to capture just 20 per cent of the great brome grass seed produced, the seed bank can be halved over a six-year rotation. Consistently collecting and destroying 60 per cent of the great brome seed each year can reduce the weed seed bank from almost 11,000 seeds to just 86 at the end of a six-year rotation. Any herbicide tactic applied early in the season that only achieved 20 per cent control would be considered a waste of time, and this highlights the value of late season weed control tactics such as HWSC. How long do great brome seeds last in the soil? In brief: Great brome grass can be brought under control in three or four years if an integrated weed management plan is implemented. The details: Under irrigation, about 40 per cent of the seed germinated in the first year and almost all the seed had germinated by the end of the third year. In field conditions a similar pattern was recorded for both great brome and barley grass. If control tactics are used to stop seed set then it is possible to reduce weed numbers within a few years. Great brome populations in SA were found to exhibit more delayed emergence traits than populations in WA. This could be due to the longer history of pre-emergent herbicide use in SA that has resulted in the evolution of delayed emergence to avoid early herbicide application. In both WA and SA, barley grass populations exhibited staggered emergence. Great brome is highly competitive and is a costly weed for growers, particularly in low crop yield seasons. However, when moisture is not a limiting factor, crops can often produce good yield even when high weed numbers are present.
Article
Ask an Expert

Group G herbicides & effectiveness for herbicide resistance

There has been a gap in the pre-emergent herbicide options for growers to control broadleaf weeds, particularly in pulses, but also in cereals. Dr Chris Preston, Professor, Weed Management at The University of Adelaide says a suite of new Group G herbicides will go a long way to help growers control brassica and thistle weeds and rotate away from the imi chemistry that has been heavily used in recent years. Dr Chris Preston, University of Adelaide says using the suite of new Group G herbicides in a tactical way to control early germinating broadleaf weeds could help keep pulses profitable in southern farming systems. “The new Group G herbicides will be of particular value in pulse crops,” he says. “Until recently Group G products have only been used in small quantities, predominantly as a knockdown spike ahead of planting, but several of the new products have pre-emergent herbicide use patterns.” Group G mode of action inhibits part of the process for making chlorophyll, and the leaves die as a result. Uptake of the herbicide is usually through the leaf surfaces – either through contact on emerged weeds or taken up from the soil as the weed seedlings break through the soil surface. “The introduction of Terrain (flumioxazin) as a pre-emergent broadleaf herbicide in front of faba beans offered a new and helpful use pattern in the pulse phase,” Chris says. “Terrain is also a good fenceline weed control option on heavier soils, provided all surface vegetation is removed prior to application.” Syngenta’s yet-to-be-released Group G product, Reflex (fomesafen) is expected to offer pulse growers pre-emergent control of broadleaf weeds that might be resistant to other MOA groups. This product can be used either pre-emergent incorporated by sowing (IBS) or post sowing, pre-emergent (PSPE), and will provide an alternative to imi herbicides for the control of weeds like sowthistle and prickly lettuce in pulse crops. Lentils are less tolerant than other pulse crops, so Reflex can only be used IBS in lentils. With the release of these new products Chris is reminding growers and agronomists of the importance of ensuring that herbicide product choice is always based on addressing the weeds present that are likely to cause economic loss or produce large quantities of seed. “Mixing and rotating herbicide modes of action is one of the WeedSmart Big 6 tactics, but crop competition is just as important,” he says. “Pulses are particularly sensitive to competition from weeds in the early crop stages, so using these Group G herbicides in a tactical way to control early germinating broadleaf weeds could be a very good way to keep pulses profitable in our southern farming systems.” The sustainable use of Group G and other new herbicides coming to market will be a key topic at WeedSmart Week 2020 in Clare, SA. The companies developing these new Group G products will be present to answer questions and provide advice. Click here to register for WeedSmart Week 2020. Should I mix and rotate these new herbicides with existing products? In brief: Yes. Read the labels as they become available and look for opportunities to mix and rotate within and between seasons and crops. The details: For example, Terrain offers broad spectrum weed control in tank mixes with TriflurX, Terbazine, Avadex Xtra, Kyte, Simagranz and Rifle. Terrain has a narrow weed spectrum for the rate registered in-crop for faba beans. With some clever planning these products can help ‘bring back’ some previously lost chemistry using the mix and rotate tactic, extending the effective life of a broader range of herbicide options. When coupled with some non-herbicide tactics the grower can regain control of herbicide resistance on their farm and operate in a low-weed situation. What new use patterns are available with the new Group G herbicides? In brief: Pre-emergent with IBS and knockdown options. The details: The first Group G with pre-emergent properties to hit the Australian market was Terrain (flumioxazin), from Nufarm with new use patterns registered for wheat and pulses. Other products with pre-emergent properties expected to come to market in the next year or two are Syngenta’s Reflex (fomesafen) and BASF’s Voraxor (saflufenacil + trifludomoxazin). Voraxor can be used pre-emergent in cereals and also as a knockdown spike. Terrador (tiafenacil) from Nufarm will have knockdown spike use and is safe for cereal or pulse planting just one hour after application. More details about the new products can be found in the Group G Tech Note. The early trials with Reflex look very promising and widespread use of this herbicide is expected in WA, where farmers have battled wild radish control in lupins for decades. Is resistance to Group G a problem? In brief: Not yet in Australia. The details: There are no recorded cases of weeds resistant to Group G herbicides in Australia. Although the Group G mode of action has been commonly used for over 15 years, these products have generally been used in small quantities. Resistance to Group G is becoming widespread in North America and we will soon have resistance problems if we do not practice the Big 6 tactics to minimise weed seed production. More resources: Podcast – What role are Group G herbicides playing in farming systems Diversity Era – Pre-emergent herbicides online course Group G Tech Sheet Nufarm Terrain – Group G pre-emergent and knockdown 500 g/kg flumioxazin New registrations for wheat and pulses in 2019. Pre-emergent weed control in lucerne, wheat, faba bean, chickpea, field pea and along fencelines. Broadleaf weed control only in pulses. Control emerged weeds with knockdown before applying Terrain in wheat and pulses or along fencelines. New chemistry for IBS use pattern. Improves brown-out and weed control of knockdown herbicides. Pre-plant knockdown spike ahead of barley, chickpea, cotton, faba beans, field peas, lentil, lupin, maize, mungbean, oats, sorghum, soybean, sunflower, wheat. Add to glyphosate and paraquat/diquat products. Requires adjuvant. Not suitable for lighter soils. Residual activity on annual ryegrass, sow thistles and wild radish. Broad spectrum weed control in tank mixes with – TriflurX, Terbazine, Avadex Xtra, Kyte, Simagranz, Rifle. Syngenta Reflex – Group G pre-emergent 240 g/L Fomesafen SL Registration expected early 2021. Suitable for a range of pulses Wide range of broadleaf weeds (including sowthistle and prickly lettuce) – check label when available. IBS or PSPE uses. IBS knife points and presswheels only in lentils. BASF Voraxor – Group G knockdown and pre-emergent herbicide 250 g/L saflufenacil plus 125 g/L trifludomoxazin Both group G actives Used in wheat, durum and barley against a wide range of grass and broadleaf weeds IBS knife points and presswheels only Registration expected in 2020 and launch in 2021 Knockdown and residual control of broadleaf weeds plus suppression of ryegrass. Broadleaf residual control for 8 to 12 weeks (at higher application rates) Partner with glyphosate as a knockdown spike or mix with paraquat for double knock applications. Nufarm Terrador – Group G knockdown spike 700 g/kg tiafenacil WG Registration and commercial launch expected in 2021. Likely use pattern, partner with glyphosate as a knockdown spike or mix with paraquat for double knock applications. Expect suppression of ryegrass as a knockdown partner with glyphosate or paraquat. 1 hr plant back for cereals and pulses, probably 7–14 days for canola, depending on rate.
Article
Ask an Expert

How can I maximise the weed control value of my crop rotation?

A diverse crop rotation is the twine that holds a good farming system together and underpins an effective weed management program. Kevin Morthorpe, Pioneer Seeds’ Trait & Seed Technology Stewardship Manager says herbicide tolerance traits in crop hybrids can be used to maximise competition against weeds and increase the herbicide options available to growers while optimising yield and profitability of the crop sequence in rotations. Kevin Morthorpe (left) – Pioneer Seeds’ Trait & Seed Technology Stewardship Manager, with Dr Ray Cowley – Canola Research Scientist, Corteva Agriscience and Pioneer Seeds’ Rob Wilson – Strategic Customer & Market Development Manager and Clint Rogers – Western Regional Sales Manager & Canola Product Lead at a canola research trial near Jindera in southern NSW. Plant breeders continue to introduce herbicide tolerance traits in a number of crops in Australia, including corn, canola, pulses, cereals, grain sorghum, summer forages and cotton. “For example, in canola there are several herbicide tolerance traits and they are primarily available in hybrids,” he says. “This means growers get both improved crop performance due to hybrid vigour and more flexibility in herbicide use patterns.” The increased vigour of canola hybrids also generates greater biomass production and early canopy closure that suppresses growth and seed set of weeds that germinate in-crop, complementing the use of pre-emergent herbicides. “Hybrids super-charge crop competition through a strong root system and vigorous growth,” Kevin says. “From an economic angle, hybrids optimise yield in both high input and tough environments. In fact, we see more growers selecting hybrids when producing canola in tough conditions.” Since the release of the first herbicide tolerant canola in 1991, the popularity of herbicide tolerance has seen a 98 per cent adoption of canola varieties with tolerance to imidazolinone (Clearfield), triazine (TT) or glyphosate (RR). In the last 15 years, the area sown to hybrid canola has risen to an impressive 47 per cent in Australia. With glyphosate tolerant canola hybrids entering South Australia in 2021 and new hybrid releases, the hybrid percentage will increase further over coming years. With glyphosate tolerant canola hybrids entering South Australia in 2021 and new hybrid releases, the hybrid percentage will increase further over coming years. Kevin says that Pioneer Seeds have seen increasing demand for Clearfield canola in recent years following a dip in popularity. Through strategic application of herbicide tolerant traits in diverse crop rotations it seems that farmers are overcoming the resistance problems that were prevalent with the Clearfield technology and can now re-introduce these varieties and take advantage of the weed control benefits and high yields they offer, and manage herbicide residues in the soil. “A diverse rotation of crops and pastures is one of the WeedSmart Big 6 tactics, which Pioneer Seeds endorses wholeheartedly to protect the longevity and effectiveness of herbicide tolerance traits,” he says. “Through an effective crop rotation you can tick off all the herbicide and non-herbicide tactics needed to drive down weed numbers.” How do I make the most of a hybrid crop? In brief: Employ best practice agronomy. The details: Grain hybrids are vigorous plants that produce increased biomass and grain yield. To do this, they must be supported with adequate crop nutrition. When properly fed, hybrids will provide increased crop competition and achieve greater water use efficiency compared to their conventional counterparts. Growing a hybrid crop with herbicide tolerance traits does not equate to a full weed control program. These crops must be used within the WeedSmart Big 6 framework, within a diverse crop rotation and using herbicide tactics such as double knocking alongside cultural practices such as harvest weed seed control and crop competition to reduce seed set. They also combine well with pre-emergent herbicides to achieve excellent early weed control and suppress seed set in any late germinating weeds. Can I use hybrid crops with herbicide tolerance to fix a weed blow-out? In brief: No. This technology is not suitable for salvage operations. The details: When Roundup Ready canola varieties were first released there was an expectation that these traits could be used to reverse a weed infestation. This proved not to be the case. Hybrid crops are best used in low weed density situations where they can effectively drive down the weed seedbank. They should be grown in rotations that include an effective double-break, brown manure crop or a pasture phase. Having hybrid crop options for both summer and winter growing seasons increases the opportunities to tackle weeds throughout the year or to use different fallow herbicides while maintaining the ability to safely grow crops in the following season. New glyphosate tolerance traits (Truflex® and Optimum GLY®) and the stacking of herbicide tolerance traits of triazine tolerant and Clearfield® (TT+CL) have expanded the safe window for herbicide application in canola. Are residues in grain a concern when using stacked trait herbicide tolerant hybrids? In brief: Not if the stewardship program is followed. The details: New glyphosate tolerance traits (Truflex® and Optimum GLY®) and the stacking of herbicide tolerance traits of triazine tolerant and Clearfield® (TT+CL) have expanded the safe window for herbicide application in canola. This gives more options, more flexibility and more crop safety through the rotation. The stewardship program for the herbicide tolerant trait hybrids describe herbicide use patterns that growers must follow to confidently avoid the accumulation of herbicide residue in the grain and ensure that Australian maximum residue limits (MRLs) will not be exceeded. [Note that MRLs in other countries may be different to the Australian MRL. Find out more at Grain Trade Australia] To avoid problems with crop safety within the rotation it is important to maintain accurate paddock records to avoid applying herbicide to the wrong crop variety and ensure susceptible crops are not sown into paddocks with herbicide residues in the soil. On the flip-side, herbicide tolerance in crops increases the options for crop selection within the rotation. Also, keep in mind the importance of controlling any volunteers from a herbicide tolerant crop in the summer fallow or following crop.